Cloud properties from Remote Sensing

Claudia Stubenrauch Atmospheric Radiation Analysis (ARA) group C.N.R.S./IPSL - Laboratoire de Météorologie Dynamique, Ecole Polytechnique, France

Satellite radiometers measure:

weighting function

 0.8

Longterm cloud climatologies:

+ A-Train *(since 2006)***: CALIPSO L2 data (V2)** *(Winker et al. 2007) active lidar*

Cloud Assessment co-chairs:

C. Stubenrauch, S. Kinne

http://climserv.ipsl.polytechnique.fr/gewexca

ISCCP

International Satellite Cloud Climatology Project

¨**Cloud detection**

IR spatial and temporal variability VIS, IR composite clear sky statistics

relative threshold tests

ISCCP *(Rossow & Schiffer BAMS, 1999) night:* +75 hPa p_{cld} bias *(Stubenrauch et al. 1999) uncertainties depend on cloud type:* \triangleright Stratus (τ_{cld} >5): p_{cld} 25-50 hPa within radiosonde meas., ~ -65 hPa bias; err T_{cld} < 1.5 K \triangleright high clouds (τ_{cld} >5, with diffuse top): p_{cld} 150 hPa (trp)/ 50 hPa (midl) above top Ø*isolated thin Cirrus:* difficult to detect Ø*thin Cirrus above low clouds:* often identified as midlevel or lowlevel cloud 15% τ_{cld} decrease for doubling droplet size Evaluation

TOVS Path-B *(Stubenrauch et al. J. Clim. 2006)* p_{cld} uncertainty 25 hPa over ocean, 40 hPa over land (2nd χ^2 solution) **p_{cld}** = **mid-cloud** p_{cld}: 600m/ 2 km below cloud-top (low/high clouds) (LITE, Stubenrauch et al. 2005) Sensitivity study for De of Ci *(Rädel et al. 2003)*

HIRS-NOAA *(Wylie & Menzel J. Clim. 1999, Wylie et al. J. Clim. 2005)* pcld 70 hPa above top (lidar, *Wylie & Menzel 1989*) 100 hPa above for transmissive cloud overlying opaque cloud *(Menzel et al. 1992)*

ISCCP – TOVS comparison

agreement for homogeneous scenes

(collocated data) Stubenrauch et al. J. Clim. 1999

remaining discrepancies:

• **Atmospheric temperature profiles**

(1 operational TOVS profile per day - retrieved or TIGR) -> mid - lowlevel misidentification

- **Small scale heterogeneities**
- **horizontal: vertical: TOVS partly cloudy multi-layer clouds ISCCP** -> cirrus misidentification

TOVS good IR spectral resolution -> properties of uppermost cloud

High clouds not observed by radiometers

SAGE II: *1984 – 1991,* **SAGE III:** *since 2002 Limb occultation sunrise / sunset at* $1 \mu m$ *, 0.5* μm *, (7 / 11* λ *'s) Path: 200km (*x *2.5 km)*

ISCCP-SAGE => L=75 km *(Liao et al.1995)* HIRS-SAGE => L=130 km *(Wylie + Wang 1997)*

1/3 of high clouds: subvisible Ci *(not observed by radiometers)*

 $CA_{high} SAGE > CA_{high} TOVS > CA_{high} ISCCP$

A-Train: synergy of passive and active instruments

active instruments -> vertical structure of clouds lidar sensitive to very thin cirrus

Cloud/Aerosol Classification (Vertical Feature Mask) (Calipso - Lidar) 19-Apr-2008 13:48:36 - 13:55:51 GMT **Stratespheric Clouds Aerosols Total Attenuation Clouds** 13:48:36 13:50:25 13:52:13 13:54:02 13:55:51 30 E 24 Altitude (km) $18\overline{5}$ $\begin{array}{c}\n12 \\
\hline\n6 \\
\hline\n6\n\end{array}$ οĒ Latitude -2.2 4.4 11.0 17.5 $-2,6$ $-1,2$ $-4,0$ -5.5 Longitude online data visualization & analysis tool and the setting of the setting of the setting of the setting of the set

NASA Giovanni: **http://disc.sci.gsfc.nasa.gov/techlab/giovanni**

Evaluation of AIRS-LMD cloud height with 1 year collocated CALIPSO data

good agreement with CALIPSO midlevel of cloud *(highest with* t*>0.1)* slightly broader distributions for optically thinner clouds, but no bias

sampling: (5 km x 0.07 km) in (13.5 km x 13.5 km)

 $\Delta z_{\text{mid}}(\text{AIRS-CALIPSO}) \pm 1.5 \text{ km}$ **High: 51% 55% 66% Low: 70% 74% 80%** *hghst / hghst w* t*>0.1 / closest layer* $\Delta p_{mid}(AIRS-CALIPSO) \pm 75 hPa$: **High: 72% 81% (thick); 63% (thin) Low: 59% 69% ; 38%**

Cloud properties depend also on retrieval method!

Average CA

diurnal sampling, time period for ISCCP / TOVS-B: 1% effect; low-level over land: 2% (Stubenrauch et al. 2006)

~ **70 % (±5%) cloud amount: 5-15%** *more over ocean than over land* PATMOS, MODIS-CE low (land), SAGE CA $(200km, clds \tau > 0.03)$ 1/3 higher

40% single-layer low clouds: *more over ocean than over land; SOBS*

40% high clouds: *only 3% thick Ci; more over land than over ocean*

IR sounders $\sim 10\%$ more sensitive to Ci than ISCCP (15% in trps) SAGE cloud vertical structure in good agreement with IR sounders HCA/CA:CALIPSO>SAGE,TOVS/HIRS > MODIS-CE > PATMOS > ISCCP_{day}> MODIS > ISCCP_{IR}

CA seasonal cycle over land

HCA/CA seasonal cycle

LCA/CA seasonal cycle over ocean

small seasonal cycle; exception: SH subtropics stratocumulus regions (20%)

SOBS: 18% more LCA and smaller seas. cycle over ocean

=> LCA seas. cycle from satellite modulated by HCA & MCA seas. cycle

uncertainties in cloud height determination (esp. thin cirrus), T profiles **comparations in the comparation**

Solar heating & cloud formation

warm air rises, expands, cools \rightarrow **condensation**

cumulus:

form in unstable atmosphere [large lapse rate $(\sim 11^{\circ}C/km)$] (warming of the Earth's surface or cooling of air aloft) *summer afternoon, tropics*

Source: NASA Visible Earth

stratus:

form in stable atmosphere [small lapse rate $(\sim4^{\circ}C/km)$] (cooling of the Earth's surface or warming of air aloft) *early morning, subsidence*

near noon

early evening

diurnal cycle of clouds *Cairns, Atm. Res. 1995*

ISCCP C2, Complex Empirical Orthogonal Functions,

TOVS-B diurnal cycle of high clouds

NOAA10/12 7h30 AM&PM, NOAA11 2h00 AM&PM(1989-90) NOAA11 4h30 AM&PM(1994-95)

strongest diurnal cycles over land, in tropics (& in midlat summer)

 \triangleright max Cb (ISCCP) in early evening \triangleright max. thick (large-scale) cirrus & cirrus in evening Øcirrus occurrence continues during night & decreases during day \blacktriangleright max. thin cirrus in early afternoon

Longterm dataset

-> explore rare events tropical convection penetrating into the lower stratosphere *Rossow & Pearl GRL 2007*

cluster analysis if ISCCP DX data

occurrence predominantly in larger, organized mesoscale convective systems

water cloud effective droplet radius

ISCCP: AVHRR NIR-VIS

Han, Rossow & Lacis J. Clim. 1994, Han et al. 1998

re slightly larger over land than over ocean

effective ice crystal diameter

 $\mathbf{1}$

D_e & IWP as function of humidity & wind

Large-scale semi-transparent cirrus 60°N – 60°S, 4 year averages

TOVS -ERA40 *IWP and De increase with atmospheric water vapour IWP largest in case of strong large-scale vertical updraft De smallest in case of strong large-scale hor. & vert. winds*

Synergy of retrieved cloud properties & model : Cirrus radiative flux analysis eliminate *TOVS atmospheric profiles De=10-90*µ*m; De=f(IWP),= f(T)* multi-layer \bigcirc *cirrus properties* clouds radiative transfer model: **Met Office** $\blacklozenge p_{\text{cld}} = p(\text{mid-cloud})$ $\Delta p = 100 \text{ hPa} (\approx 2 \text{ km})$ ¨*Single scattering properties (SSPs) = f(*l*, De) for hex. columns, aggregates* \triangle choose IWP with ε (IWP,D_e) $\approx \varepsilon_{\text{cld}}$ ^{IR} *look-up tables* $\varepsilon_{\text{cld}}^{\text{IR}}$ *(IWP,D_e),depending on* θ_{v} *,* Δz *, SSPs* ADMs*simulated fluxes ¹⁵⁰⁰ ScaRaB fluxes* $L^{\textit{\tiny{SW}}}$ $\alpha^{SW}(\theta_0) = \frac{\pi}{R}$ $S^{W}(\theta_{0})=$ $(\theta_0) = \frac{\hbar}{R(\theta_0, \theta_v, \phi, \tau, \text{phase}, \text{het})} E_0 \cos \theta_0$ $R(\theta_0, \theta_v, \phi, \tau, \text{phase}, \text{het}) \, E_0 \cos \theta_0$ Anniversary, New York 25

Coherence between IR IWP and SW albedo

Stubenrauch et al. J. Clim. 2007

effect on TOA SW flux : ~2 Wm-2

Satellite observations:

☆ unique possibility to study cloud properties over long period -> climatological values of CA, HCA, MCA & LCA

(also variabilities, $T_{cld}, \epsilon, \tau, D_{eff}$, WP) to help evaluate climate models

v70% (±5%) clouds: ~ 40% high clouds & ~40% single-layer low clouds

vin general geographical cloud structures agree quite well: max of high clouds in ITCZ (up to 60%),

few single-layer midlevel clouds in tropics (5%), most in NH midlat winter (15%) low clouds over ocean: seasonal cycle in Stratocum regions in good agreement * Seasonal cycle of LCA from SOBS smaller and abs value 20% higher -> multilevel clouds

∻CALIPSO L2 analysis confirms:

IR sounders are the passive instruments most sensitive to cirrus They only miss 10%/5% subvisible cirrus in tropics/midlat (These are caught by limbsounding SAGE & active CALIPSO)

ISCCP miss 15%/10% in tropics/midlat compared to IR sounder, (included in MCA)

PATMOS, MODIS still in validation process, but will miss more thin Ci than TOVS/HIRS, AIRS, IASI ❖ ISCCP only dataset which resolves diurnal cycle (drift of NOAA afternoon satellites -> TOVS)

* advantage of longterm dataset: exploration of rare events

 \cdot droplet size smaller over land than over ocean

☆ ice crystal size slightly larger from IR than from NIR-VIS

* synergy of different variables & data sets important

vCALIPSO-CLOUDSAT to determine vertical structure of clouds & help to evaluate other cloud properties

v evaluation continues & WMO report in preparation (lastt meeting 21-23 July in New York)

Sensitivity study

Rädel et al. JGR 2003

Overestimation of D_e : \leftrightarrow thin Ci with underlying water cloud

- ¨ **partial cover of thick Ci**
- ¨ **hexagonal columns instead of polycrystals**

Underestimation of $D_e: \rightarrow$ increasing D_e with cloud depth ¨ **broader size distribution**

av. daily irradiance (Wm-2)

www.sci.ccny.cuny.edu/~stan/e31_sunl.ppt#10

Earth axial tilt (obliquity) -> seasons

sun / atmospheric circulation

geographical cloud distributions

©1994 Encyclopaedia Britannica Inc.

stratocumulus

July 2008 Schematic view of the east-west Walker circulation along the equator *(from Webster 1987)* 301 Schematic view of the east-west Walker circulation along the equator *(from Webster 1987)*

Cirrus SW albedo & IR emissivity as fct of IWP

Aggregates reflect more solar & keep less therm. rad. than pristine crystals!

best fit to data **(**•**▲):** α_{SW} = 32% – 45% & ε_{IR} = 0.4 – 0.75 for IWP = 5 gm⁻²– 55 gm⁻²

 $D_e = 55 \mu m$ (Δ): underestimation of $\alpha_{SW} \& \varepsilon_{IR}$

July 2008 ISCCP 25th Anniversary, New York 31 aggregates in all cirrus (\triangle): 2% overestimation of $\alpha_{\rm SW}$ at small IWP

Tropical high clouds: T_{cld} distributions

ISCCP CALIPSO TOVS AIRS

De, IWP & crystal shape retrieval with AIRS

based on spectral emissivity difference

for $0.3 < \varepsilon_{11nm} < 0.85$ *sensitivity up to* $D_e \leq 80 \mu m$ $0.3 < \varepsilon_{11\mu\text{m}} < 0.85$
 $0.7 < \tau_{VIS} < 3.8$

4A-DISORT simulation of radiances: I_{clr} , I_{cld} , I_{meas} 7 < D_e < 90 µm, 1 < IWP < 130 g.m⁻²

CALIPSO: distinguish single layer clouds