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ABSTRACT: A clustering methodology is applied to cloud optical depth (t)–cloud top pressure (TAU-PC) histograms
from the new 18 resolution ISCCP-H dataset to derive an updated global weather state (WS) dataset. Then, TAU-PC
histograms from current-climate CMIP6 model simulations are assigned to the ISCCP-H WSs along with their concurrent
radiation and precipitation properties to evaluate model cloud, radiation, and precipitation properties in the context of the
weather states. The new ISCCP-H analysis produces WSs that are very similar to those previously found in the lower-
resolution ISCCP-D dataset. The main difference lies in the splitting of the ISCCP-D thin stratocumulus WS between the
ISCCP-H shallow cumulus and stratocumulus WSs, which results in the reduction by one of the total WS number. The
evaluation of the CMIP6 models against the ISCCP-H weather states shows that, in the ensemble mean, the models are
producing an adequate representation of the frequency and geographical distribution of the WSs, with measurable im-
provements compared to the WSs derived for the CMIP5 ensemble. However, the frequency of shallow cumulus clouds
continues to be underestimated, and, in someWSs the good agreement of the ensemblemean with observations comes from
averagingmodels that significantly overpredict and underpredict the ISCCP-HWS frequency. In addition, significant biases
exist in the internal cloud properties of the model WSs, such as the model underestimation of cloud fraction in middle-top
clouds and secondarily inmidlatitude storm and stratocumulus clouds, that result in an underestimation of cloud SW cooling
in those regimes.

KEYWORDS: Cloud forcing; Cloud retrieval; Data mining; Satellite observations; Climate models; Clouds; Model
evaluation/performance

1. Introduction

Satellite observations of cloud properties have been used to
evaluate climate models ever since the TIROS meteorological
satellites, launched by NASA in the 1960s, provided the first
remote retrievals of global cloud cover (e.g., Somerville et al.
1974). Two main objectives of those cloud evaluation efforts
were to inform model developers of the deficiencies in the
model cloud field so as to assist in improving cloud parame-
terizations in future model versions, and to increase our un-
derstanding of cloud-related processes that play key roles in
cloud climate feedbacks. Originally cloud fraction was the only
observational field available for evaluation; but since the ad-
vent of the International Satellite Cloud Climatology Project
(ISCCP; Rossow and Schiffer 1991), the launch of microwave
radiometers like SSMI (Ferraro et al. 1996) and active sensing
instruments such as radars and lidars onCloudSat andCALIPSO
(Stephens et al. 2008; Winker et al. 2009), additional cloud
properties like top pressure, optical thickness, liquid water
path, and vertical extent were included in the model evaluation
comparisons. For a long while, those evaluations were based on
comparisons of time- and space-mean cloud fields, often one

at a time and independent from the coincident properties of the
atmosphere (e.g., Hansen et al. 1983; Schmidt et al. 2006).
These comparisons provided quantitative measures of the de-
ficiencies of the properties of the simulated clouds but did not
provide information on the connections between the proper-
ties of the cloud field and the coincident atmospheric state and
processes. As a result, this type of analysis often did not pro-
vide modelers with sufficient leads to the components of the
model parameterizations that could be responsible for the
cloud property deficiencies, and did not provide information
on the mechanics of cloud-related processes that could be re-
sponsible for cloud climate feedbacks.

This pointed to the need to develop more process-based
model evaluation techniques, and several methods were de-
veloped with the aim to sample observational data into distinct
regimes and evaluate model cloud properties within each re-
gime. The regime definition methods that were applied can be
divided into two broad categories. In the first category, one or
more atmospheric parameters were used to derive a dynamic
or thermodynamic regime in observations and models, and
the model clouds were evaluated in that particular regime.
Following this methodology, model clouds were evaluated,
among others, in tropical and midlatitude ascending and
descending motion regimes (Bony and Dufresne 2005; Tselioudis
and Jakob 2002), in combined vertical motion/boundary layer
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stability regimes (Grise and Medeiros 2016), and in midlatitude
storm composites (Bodas-Salcedo et al. 2014). These analyses put
model cloud deficiencies in the context of atmospheric processes,
showing for example that model boundary layer cloud cover was
deficient in subsidence regimes in general (Bony and Dufresne
2005; Tselioudis and Jakob 2002) and in midlatitude cold air
outbreaks in particular (Bodas Salcedo et al. 2014), and that
this low cloud bias may be in part due to a stronger than ob-
served dependence of model cloud formation on vertical ve-
locity and a weaker than observed dependence on boundary
layer stability (Grise and Medeiros 2016).

In the second regime definition category, data mining tech-
niques such as cluster analysis or neural networks are applied
to the cloud properties themselves in order to extract cloud-
defined regimes, and the analysis of the atmospheric conditions
is subsequently used to understand the regime behavior. A
data mining technique used widely in cloud property analysis
relies on the application of the K-means clustering algorithm
(Anderberg 1973) on combined histograms of cloud optical
depth (t)–cloud top pressure (TAU-PC) from the ISCCP or
the Moderate Resolution Imaging Radiospectometer (MODIS)
datasets. The method was first applied to the 2.58, 3-hourly
ISCCP-D1 dataset for the region of the western Pacific (Jakob
and Tselioudis 2003). It was then extended to the whole tropics
in Rossow et al. (2005), and to the globe in Tselioudis et al.
(2013). The derived cluster centroids represented distinct cloud
type distributions characterized by distinct TAU-PChistograms,
and were shown to relate to discrete atmospheric regimes that
were termed weather states (WSs). Application of the same
clusteringmethod toMODISTAU-PC histograms (Oreopoulos
et al. 2014) produced a set of cloud regimes similar in nature
to the ISCCP weather states. The ISCCP-D1 WSs were used
in the evaluation of cloud simulations in the Climate Model
Intercomparison Project phase 3 (CMIP3; Williams and Tselioudis
2007; Williams and Webb 2009) and phase 5 (CMIP5; Jin et al.
2017) families of models. The analysis of Williams and Webb
(2009) showed large model spread and deficiencies in cumulus
congestus (midlevel) and transition (shallow cumulus) clouds
in the extratropics, at magnitudes similar to the previously
identified model deficiencies in stratocumulus clouds in the
tropics. This led to the more focused analysis of Bodas-Salcedo
et al. (2014), who identified cold air outbreaks behind frontal
zones in the SouthernOceans as amajor regime ofmodel cloud
deficiencies. Similar deficiencies in CMIP5 model shallow cu-
mulus clouds in North Atlantic cold air outbreaks was found in
Rémillard and Tselioudis (2015). The analysis of Jin et al.
(2017) found tendencies in the CMIP5 models to underesti-
mate the occurrence of optically thin clouds and clouds with
midlevel tops, and to perform better in the simulation of op-
tically thick storm clouds.

In the past few years, two new sources of data have become
available to the science community. First, a new 18 horizontal
resolution version of the ISCCP cloud property products was
introduced (ISCCP-H; Young et al. 2018). At the same time,
the latest versions of climate models were used in the CMIP6
program to perform a suite of present and future climate
simulations. The present study takes advantage of those new
resources, by first applying the clustering methodology of

Tselioudis et al. (2013) to the TAU-PC histograms of the
ISCCP-H dataset, in order to derive an updated cloud-defined
weather state dataset. Then, TAU-PC histograms from the
output of the CMIP6 model simulations are assigned to the
derived weather states along with their concurrent radiation
and precipitation properties, with the objective to create model
WS climatologies and to evaluate cloud, radiation, and precipi-
tation properties in CMIP6 models in the context of the WSs.

2. Datasets and analysis method

a. ISCCP-H 18 dataset

A summary description of the new ISCCP-H products is
provided by Young et al. (2018), with complete details in the
Climate Algorithm Theoretical Basis Document (Rossow 2017).
Overall, the ISCCP-H cloud property retrievals are very sim-
ilar to the ISCCP-D ones, with only a few notable differences.
Higher spatial resolution produces a more ‘‘U-shaped’’ distri-
bution of cloud amount frequencies and hence, as also shown
below, the frequency of occurrence of completely clear con-
ditions increases and the total cloud cover for the cloud WSs
increases. The only significant change in ISCCP-H cloud amount
is a decrease by about 0.1 (absolute) over Antarctica in sum-
mertime because of the removal of the test on the 3.7-mm
channel, which is not available over the whole record. Average
cloud top pressures in both polar regions increase by 30–40 mb
(1 mb 5 1 hPa) in winter and decrease by about the same
amount in summer relative to the ISCCP-D values, due mainly
to the change in the ancillary atmospheric temperature profile
dataset that is used (cloud top temperatures are nearly the
same on average). There is an increase in the amount of high,
thin clouds (identified in the summer where daylight is avail-
able), which appears to be consistent with CALIPSO obser-
vations. The final significant change in cloud properties is a
decrease of the cloud top temperature threshold used to sep-
arate ice and liquid clouds to 253K from 260K, which reduces
the relative amount of ice clouds in the ISCCP-H dataset.

b. WS derivation through K-means clustering

The method described in detail in Tselioudis et al. (2013)
and previous papers (Jakob and Tselioudis 2003; Rossow et al.
2005) was also used here to perform the cluster analysis of the
ISCCP-H TAU-PC histograms. The K-means clustering algo-
rithm (e.g., Anderberg 1973) was applied to the cloud fraction
vector formed from the histograms of PC-TAU for each 3-hourly,
18 ISCCP-H grid cell over the period July 1983–June 2015 to
derive optimized PC-TAU clusters. Since TAU is only avail-
able during daytime in the ISCCP-H dataset, the derived
clusters are also only available for 3-hourly daylight periods. In
the cluster analysis, the ‘‘best’’ (optimum) cluster number K is
determined objectively by a set of diagnostic checks, described
in detail in Tselioudis et al. (2013). Briefly, the clustering al-
gorithm is run in consecutive steps with K increasing by 1, and
in every iteration statistical tests are carried out to check four
criteria: whether the clustering procedure converges, whether
this convergence is insensitive to the set of centroids used to
initiate the algorithm, whether the dispersion of all the vectors
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in each cluster is minimized, and finally whether a distinctly
new centroid pattern has appeared when increasing K by 1
from the previous set of clusters. Note that grid points that are
completely cloud free are not included in the cluster analysis
process and form their own clear-sky category.

Based on the above criteria, the method is applied on the
ISCCP-H TAU-PC histograms. The analysis produces a set of
10 cloud weather states as the most stable result, and the
dataset and plots for the ISCCP-H weather states are archived
and presented at http://isccp.giss.nasa.gov/wstates/hggws.html.
The cluster analysis of the ISCCP-H data yields two pairs of
WSs that include very similar TAU-PC histograms and geo-
graphical distributions, with the only difference between them
being the mean optical thickness of the two cloud clusters in-
volved. Specifically, the clustering algorithm produces an op-
tically thinner and an optically thicker cirrus WS (WS3 and
WS6 respectively in the original set) as well as an optically
thinner and an optically thicker stratocumulus WS (WS9 and
WS10), with both pairs having very similar geographical dis-
tributions. Since the present paper focuses on the evaluation of
the performance of a large model ensemble in simulating the
properties of the observational WSs, to achieve better clarity
for the evaluation results it was decided to merge those two
pairs into one cirrus and one stratocumulusWS (WS3 andWS8
respectively in the merged set). The merging is done by cre-
ating two new WSs that include all grid cells assigned to the
optically thin and thick cirrus and stratocumulus WSs respec-
tively and are represented by the weighted average PC-TAU
histogram of the original WSs. This results in the set of the
eight cloud WSs presented and used in this paper. Any studies
that require a more detailed resolution of the cirrus and stra-
tocumulus cloud fields, such as a more detailed model evalu-
ation of thoseWSs, can be done by accessing the more detailed
10-cloud WS dataset that is archived in the ISCCP WS web
page provided above.

c. Model evaluation through WS assignment

Climate model AMIP simulations of the twentieth century
are evaluated in this study using the ISCCP-H weather states.
The models that are used in the analysis are all the ones that
provide output from the application of an ISCCP simula-
tor package (Bodas-Salcedo et al. 2011), which derives daily
TAU-PC histograms from model cloud parameters. A list of
the CMIP6 models that are used, along with their horizontal
and vertical resolutions is provided in Table 1. The majority of
the models have horizontal resolutions close to the 18 resolu-
tion of the ISCCP-H dataset, with two models having resolu-
tions closer to 28. Note that when this resolution effect was
tested by degrading the ISCCP-H data to 28 and repeating the
WS assignment, the resulting WS dataset was almost identical
with the 18 version, implying that the model resolution differ-
ences should not introduce discernable biases to the evalua-
tion. To create a model WS climatology, each daily model
TAU-PC histogram is assigned to the ISCCP-HWSwith which
it has the smallest Euclidian distance, and the derived model
WS frequencies and cloud properties are evaluated against the
corresponding ISCCP-H ones. To perform comparisons of com-
patible model-observations quantities, a modified ISCCP-H WS

dataset is created through assignment of daily, rather than
3-hourly, ISCCP-H TAU-PC histograms to the WS centroids.
The result of the transition to the daily ISCCP-H WSs is a
significant reduction in the clear sky occurrence with smaller
reductions in all high cloud-fraction WSs, and a corresponding
significant increase in the fair weather WS and a smaller in-
crease in the cirrus WS. Once model WSs are assigned to
ISCCP-H WSs, model radiation and precipitation composites
for each WS are constructed and evaluated against analogous
ISCCP composites, which are derived using for radiation the
ISCCP-FH dataset (available at https://isccp.giss.nasa.gov/projects/
flux.html), and the CERES dataset (Loeb et al. 2018), and for
precipitation the TRMM-3B42 (Huffman et al. 2007) dataset.
Note that in order to map changes in the model cloud WS
frequency and properties between the CMIP5 and CMIP6
model ensembles, theWS analysis is also performed on CMIP5
output of the previous generation of the analyzed CMIP6models.

3. Results

a. Merged ISCCP-H weather states

Figure 1 shows the TAU-PC histograms of the eight cloud
WSs derived from the cluster analysis of the 18 resolution
ISCCP-H data and the subsequent merging (top), along with
global maps of the relative frequency of occurrence (RFO) of
each WS and of clear sky (bottom). The WS histograms are
arranged as follows. The top three categories include high-top
cloudWSs, namely optically thick tropical deep convective and
anvil clouds (WS1-DCN), somewhat lower-top and optically
thick midlatitude storm clouds (WS2-MDS), and optically thin
high cirrus clouds (WS3-CIR). Those three high cloud cate-
gories occur 6.7%, 9.5%, and 15.9% of the time, respectively,
and while the deep convective and storm cloud WSs are
practically overcast, the cirrus WS has a cloud cover of about
80%. The latter may be in part due to the fact that the ISCCP
satellite retrievals miss the thinnest cirrus clouds (Stubenrauch
et al. 2013). The next two categories include polar clouds that
show a mix of various top heights and optical thicknesses with
an RFO of 3% and a cloud cover of 84.5% (WS4-PLR), and
optically thick and nearly overcastmiddle-top clouds (WS5-MID)
that occur 6.1% of the time. Then there is the fair-weather
(WS6-FRW) category that has the lowest cloud cover (40%)

TABLE 1. CMIP6 models used in the WS analysis with horizontal
resolution and vertical layering.

Model
Horizontal resolution

(lat 3 lon)
Vertical
layering

CESM2 0.948 3 1.258 32 levels
CNRM-CM6-1 1.408 3 1.418 91 levels
CNRM-ESM2-1 1.408 3 1.418 91 levels
GFDL-CM4 2.08 3 2.58 33 levels
GISS-E2-1-G 2.08 3 2.58 40 levels
GISS-E3-G 18 3 1.258 102 levels
HadGEM3-GC31-LL 1.258 3 1.8758 85 levels
IPSL-CM6A-LR 1.278 3 2.58 79 levels
MRI-ESM2-0 1.128 3 1.1258 80 levels
UKESM1-0-LL 1.258 3 1.8758 85 levels
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FIG. 1. (top) Cloud top pressure–cloud optical thickness (PC-TAU) histograms for the eight cloud weather states and a blank histogram
(shown at bottom right) for clear sky. Noted on top of each histogram are the relative frequency of occurrence (RFO) and the total cloud
cover (TCC). (bottom) Global RFO maps of the eight cloud WSs and of clear sky.
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and the highest frequency of occurrence (37.5%), and includes
mostly scattered thin cumulus and cirrus clouds. Finally, there
are the two low-top cloud categories. The first includes optically
thinner and lower cloud-top shallow cumulus clouds (WS7-SHC),
which have a large cloud cover (79.6%) that indicates systemic
organization rather than a scattered cloud field. The second
includes optically thicker low clouds with larger cloud cover
(90.7%) and higher cloud top, indicative of stratocumulus
clouds (WS8-STC). The ninth weather state (WS9-CLR) rep-
resents completely cloud-free grid boxes, which occur 4.2% of
the time and were not included in the clustering analysis.
Table 2 lists the average cloud top pressure, cloud optical
thickness, and cloud cover of all eight cloud WSs.

TheWSRFOmaps (Fig. 1, bottom) show that deep convective
clouds (WS1) are concentrated primarily in the ITCZ/SPCZ
region, with a small concentration in the entry regions of the
northern midlatitude storm tracks near the west coasts of the
Northern Hemisphere (NH) continents. Cirrus clouds (WS3)
occur both in the ITCZ, with larger concentrations in the
tropical west Pacific and Indian Oceans, and in the vicinity
of large mountain ranges like the Himalayas, Rockies, and
Andes. The midlatitude storm clouds (WS2) occur in the core
of the midlatitude storm tracks, while the middle top (WS5)
and the organized shallow cumulus (WS7) clouds occur pri-
marily in the poleward and equatorward edges of the storm
tracks, respectively. The polar clouds (WS4) are well confined
in the polar regions, and the stratocumulus clouds (WS8) occur
mostly off the western coasts of the main continents, with ad-
ditional occurrence in the midlatitude storm tracks. The fair-
weather cloud WS shows high populations in the middle of the
tropical and subtropical ocean basins and in the polar regions.

The ISCCP-H WSs are very similar to the lower-resolution
ISCCP-DWSs (Tselioudis et al. 2013), with only one significant
difference: while the ISCCP-D analysis produced three stra-
tocumulusWSs of low, medium, and high optical thickness, the
ISCCP-H cluster analysis splits the low optical thickness stra-
tocumulus WS between the shallow cumulus and the medium
thickness stratocumulus WSs, thus producing two stratocumulus
WSs of medium and high optical thickness and reducing the
total number of WS by one. Note, however, that in the merged
analysis presented in this paper the two ISCCP-H stratocumulus
WSs were further combined into one WS8-STC. Furthermore,
the ISCCP-H cluster analysis produces a polarWS that is much
better confined to the polar regions than the corresponding one
in the ISCCP-D analysis. Finally, due to its higher resolution,
the ISCCP-H WS set has a 2% higher amount of cloud-free
boxes than the ISCCP-D WS set and a little higher total cloud
cover in all WS categories.

The vertical structure of the merged ISCCP-HWSs is shown
in Fig. 2, derived from analysis of coincident retrievals from

the CloudSat/CALIPSO radar/lidar active measurements. The
independently derived vertical profiles from the active in-
struments fall well within the cloud type assumptions derived
from the radiatively derived ISCCP-H TAU-PC histograms.
They show that deep convection and midlatitude storm cloud
WSs consist primarily of extensive cloud layers that cover the
depth of the troposphere, cirrus clouds consist of thin high
cloud layers, stratocumulus and shallow cumulus clouds consist
of mostly isolated low cloud layers, and middle-top clouds
consist both of layers that top in the middle troposphere and of
coincident low and cirrus clouds, a situation that produces
a midtroposphere radiative IR signature (cf. Jin and Rossow
1997). The radar/lidar confirm the presence of more high-top
and fewer low-top clouds in the ISCCP-H polar WS than its
ISCCP-D counterpart, due to both the better restriction of this
WS to the polar regions and to an increase in ISCCP-H high
cloud detections in that region. Some of the cirrus missed by
ISCCP appears in the composite radar/lidar forWS9 (CLR). In
general, the vertical cloud structures in Fig. 2 appear to be less
of a mixture of cloud layers and to have more distinct layer
structures than the equivalent ones for ISCCP-D (Tselioudis
et al. 2013).

The WSs derived from the cluster analysis of the TAU-PC
histograms are named after cloud types that are customarily
associated with morphological cloud characteristics, often
visible in satellite images. An attempt to associate theWSs to
cloud morphological features observed in satellite images is
shown in Fig. 3, where a grid of the derived WSs with their
assigned number is overlaid on a visible image from the
MODIS instrument on the Aqua satellite, for the case of a
midlatitude storm system that covers most of the North Atlantic
region. It can be seen that the cold and warm frontal conveyor
belts of the storm are dominated bymidlatitude stormWS2-MDS
clouds, along with some embedded deep convectiveWS1-DCN
clouds occurring mostly in the northern storm edge where the
warm conveyor belt wraps around the low pressure center. The
WSs occurring in the cold air outbreak region behind the front
can be seen as a transition between two distinct regimes: 1) the
regime in the northwestern region of the storm, where the
continental cold/dry air flows over the warm Gulf Stream wa-
ters, and which is dominated by nearly overcast middle-top
WS5-MID and stratocumulus WS8-STC clouds, and 20 the
regime farther downstream, where, as the thicker cloud deck
breaks up and cloud cover decreases, the region is dominated
by shallow cumulus WS7-SHC. The prefrontal maritime and
postfrontal continental regions are dominated by fair-weather
WS6-FRW clouds. Note that the figure is a compilation of two
Aqua overpasses that took place within the 3-h window of the
ISCCP observation, so there is some uncertainty in the ob-
servation time and exact time correspondence of each grid box

TABLE 2. ISCCP-H weather state mean values of cloud parameters.

DCN MDS CIR PLR MID FRW SHC STC

Avg PC (hPa) 242.6 433.6 316.3 395.6 606.9 645.1 840.1 725.5
Avg TAU 10.5 10.4 1.2 2.2 9.5 3.2 4 6.3
Total CF (%) 99.5 99.2 79.9 84.5 97.2 40 79.6 90.7
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with ISCCP cannot be expected. However, the figure demon-
strates that the cloud types defined through the cluster analysis
of the ISCCP TAU-PC histograms correspond closely with the
dynamic regimes where those cloud types are expected to oc-
cur (cf. Lau and Crane 1995; Tselioudis et al. 2013).

b. Weather state dynamical characteristics

The WS variability in the context of the conveyor belts of a
midlatitude storm depicted in Fig. 3 shows the strong dynam-
ical controls on cloud property distribution. Model cloud de-
ficiencies often occur in specific dynamic regimes, and clouds
occurring in postfrontal cold air outbreaks have been identified
as primary sources of model error in previous evaluations of
CMIP3 and CMIP5 models (e.g., Williams and Webb 2009;
Bodas-Salcedo et al. 2014). These low and middle top cloud
structures have distinct radiative characteristics and occur
when particular combinations of dynamic and thermodynamic
conditions are present. In addition, getting the atmospheric
heating and cooling by the characteristic WS right is crucial to

the feedbacks on the atmospheric dynamics (cf. Rossow et al.
2016). To start resolving the distinct dynamic conditions under
which the different WSs are formed, Fig. 4 shows the distri-
bution of midtropospheric vertical velocity for each WS by
plotting the WS box-and-whisker diagrams of ERA-Interim
500-mb vertical velocity (Dee et al. 2011). The vertical velocity
distributions show a regular progression, going from strong
ascending motion in convective and storm clouds to a mixed
motion regime in cirrus and middle top clouds, and then to a
descending regime in low top clouds, similar to the progres-
sion found for the ISCCP-D WSs in Tselioudis et al. (2013).
However, Fig. 4 shows that groupings of WSs have similar
vertical velocity distributions, with small differences only in
the distribution width or the length of the tails. Stratocumulus
and shallow cumulus clouds, for example, both occur primarily
in moderate descending motion and have distribution tails
reaching into the strong descending and weak ascending mo-
tion, with shallow cumulus clouds showing greater width and
tail variability.

FIG. 2. Cloud vertical structure (CVS) distributions for the eight cloud WSs and for clear sky, derived from CloudSat/CALIPSO
retrievals. The blue bars indicate cloud presence in a vertical layer, and the width of each CVS bar indicates the frequency of occurrence of
this CVS in the particularWS [see Fig. 4 of Tselioudis et al. (2013) for CVS definitions]. The white bar (space) indicates clear sky, and the
gray bar represents the sum of all CVSs that occur less than 5% of the time.
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Since vertical motion by itself only resolves broad differ-
ences between ascending and descending cloud regimes, a
second layer of dynamical complexity can be added by looking
at the differences in WS horizontal winds. Figure 5 shows wind
roses of the 850-mb wind from ERA-Interim (Dee et al. 2011)
for each WS, illustrating wind direction and speed together
with the relative occurrence of each wind subdivision. Note
that Southern Hemisphere meridional wind direction has
been reversed so that in the plot northerly wind always im-
plies an equatorward direction. At the top of each plot, the
label shows the percentage of time that eachWS occurs in the
tropical, midlatitude, and polar regions. Most WS wind roses
include one dominant wind direction regime, but several
WSs show a second significant regime as well. Overall, the
more tropical WSs (DCN, CIR, FRW) occur under the in-
fluence of easterly trade winds, but deep convection has a
significant southwesterly wind component coming poten-
tially from convection embedded in midlatitude storm sys-
tems and from convection formed during the summer Asian
monsoon. The more midlatitude WSs (MDS, MID) and the
polar WS are dominated by westerly winds characteristic of
the baroclinic jet regime, with the midlatitude storm WS
showing a southwesterly component typical of the cold-frontal
conveyor belt and the middle top WS showing a northwest-
erly component typical of the postfrontal cold air outbreak
circulation. The stratocumulus and shallow cumulus WSs
show almost equal frequency of occurrence in tropical and
midlatitude regions, and both include a prominent north-
easterly wind component characteristic of the trade wind

regime and a secondary but still significant northwesterly
component characteristic of the postfrontal circulation.

This further separation of WSs in horizontal wind regimes
indicates that stratocumulus and shallow cumulus cloud struc-
tures, with similar radiative characteristics and even dynamical
environments as far as the vertical motion field is concerned,
can occur in two distinct dynamic regimes as defined by the

FIG. 3. A MODIS-Aqua visible channel image over the North Atlantic superimposed on a
grid that indicates with a numerical value the coincident ISCCP-H weather state at the same
time span and location.

FIG. 4. Box-and-whisker diagram of ERA-Interim 500-mb ver-
tical velocity distributions for the eight cloud WSs. The line rep-
resents the median, the rhombus represents the mean, the box
represents the 75th percentile, and the bar represents the 95th
percentile of each distribution.
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horizontal wind: in cold air outbreaks behind frontal systems
and in easterly trade wind regimes. This implies that clouds in
those WSs can be formed through two distinct stratocumulus-
to-shallow cumulus transition mechanisms; one in which cloud

formation is driven by surface latent heating and boundary
layer instability and cloud breakup by precipitation onset
(Fig. 3) and the other in which cloud formation is driven by
cloud-top radiative heating and turbulence and cloud break-up

FIG. 5.Wind rose diagrams for the eight cloudWSs, fromERA-Interim 850-mbwind data. The length of each ‘‘spoke’’ around the circle
indicates the fraction of time that the wind blows from a particular direction, noted on the circles. Colors along the spokes indicate
categories of wind speed, noted on the color bar at the bottom of the plot. At the top of each plot, the label shows the percentage of time
that each WS occurs in the tropical (308S–308N), midlatitude (308–608N/S), and polar (608–908N/S) regions.
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by dry air entrainment. To distinguish between the two dif-
ferent stratocumulus and shallow cumulus dynamic regimes,
the STC and SHC WSs are split into their westward and
eastward horizontal wind components using the 850-mb wind
plotted in Fig. 6. The resulting TAU-PC histograms (not
shown) are very similar, with slightly higher optical thickness
for the westward components, and the global RFO numbers
are split almost evenly between the easterly and westerly
components (4.9%–4.4% for STC, 3.6%–4% for SHC). The
resulting RFO global maps are shown in Fig. 6, for the STC
WS at the top and the SHC WS at the bottom. It can be seen
that the splitting by the horizontal wind regime clearly sep-
arates the midlatitude from the tropical components of the
stratocumulus and shallow cumulus WSs, thus making pos-
sible more targeted studies of the mechanisms involved in the
two different cloud transitions.

c. CMIP6 model cloud evaluation

The relative frequency of occurrence (RFO) of the merged
H-WSs from the ensemble of CMIP6 model AMIP simulations
that provided the necessary TAU-PC histograms at daily res-
olution is shown in Fig. 7, together with the daily merged
ISCCP-H WS RFO. Note that the model WSs are derived
through assignment of each model TAU-PC histogram to the
ISCCP WS with which it has the smallest Euclidian distance.
The figure also shows the model ensemble mean, and with
smaller symbols theWS distributions of an ensemble of CMIP5
models that contains the earlier versions of the same models
included in the CMIP6 ensemble. For most WSs the ensemble
meanRFO of the CMIP6models falls within or just outside the

limits of the observational uncertainty, with the notable ex-
ception of the clear sky fractions that are significantly higher in
all models than in the satellite retrievals. The main reason for
this difference is that over the Sahara andArabian deserts the
models tend to simulate frequent daylight clear-sky condi-
tions while the satellites retrieve mostly fair-weather clouds.
The good agreement of the model ensemble mean with ob-
servations shown in Fig. 4 is in several WSs the result of a wide
spread of model RFO values located on either side of the ob-
served value. Moreover, systematic biases, with all or most
models biased in the same direction, exist in several WSs. The
most pronounced systematic bias occurs in the shallow cumu-
lus WS, where all but two models significantly underestimate
the RFO amount. Smaller systematic RFO biases exist in fair
weather and deep convective clouds, where most CMIP6 models
fall below the ISCCP line. The underestimate of shallow cu-
mulus clouds found in both CMIP6 and CMIP5 ensembles has
also been noted in several previous analyses of CMIP5 simula-
tions (e.g., Bodas-Salcedo et al. 2014; Rémillard and Tselioudis
2015) and was attributed to cloud underestimation in cold air
outbreaks behind midlatitude frontal systems, while the under-
estimate of midlevel cloud was also found in the WS analysis of
CMIP5 models of Jin et al. (2017).

As noted before, in addition to the systematic model biases,
in several WSs the models tend to fall into two contrasting
groups that severely underestimate and severely overestimate
respectively the ISCCP-H WS RFO values. To quantify the
CMIP6 model RFO bias spread in a way that avoids the pos-
itive and negative bias cancellations of the averaging Table 3
shows the WS RFO absolute deviation (in %) of the CMIP6

FIG. 6. Globalmaps of the relative frequency of occurrence (RFO) of the (top) stratocumulus and (bottom) shallow
cumulus WSs, separately for their (left) easterly and (right) westerly wind components.
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and CMIP5 model ensembles from the observed RFO, nor-
malized by the observed RFO value. It can be seen that in the
CMIP6 model ensemble the absolute WS RFO deviation is
above 30% of the observational value for the cirrus, polar,
stratocumulus, midlevel, and shallow cumulus WSs, implying
that the model ensemble mean agreement with the observa-
tions often results from the averaging of significant contrasting
biases. Compared to the CMIP5 ensemble, the CMIP6 models
show RFO absolute deviation values in five cloudWSs that are
smaller than the CMIP5 model ones, thus resulting in a smaller
overall mean deviation and implying an improved represen-
tation of the WS RFO distribution by the CMIP6 models.

As noted before, the WS assignment for the models is done
through closest association of the model PC-TAU histograms
with the ISCCP WSs, implying that the resulting model WSs
can still differ significantly in their cloud cover, optical thick-
ness, or cloud top pressure values or their geographical distri-
bution from the ISCCP WS to which they are assigned. Those

differences, which can result in model radiation or precipita-
tion biases even in cases of correct WS RFO representations,
are examined in Fig. 8. The figure shows for eachWS themodel
difference in (from top) mean cloud fraction, mean optical
depth, and mean cloud top pressure from the corresponding
ISCCP WS, and (bottom) the RMS difference of WS geo-
graphical pattern derived through differencing of theWS RFO
maps of each model from the corresponding ISCCP maps.
The CMIP5 model ensemble mean is also plotted on all the
panels. It can be seen that with the only major exception of
the shallow cumulusWS, CMIP6models tend to underestimate
WS cloud fraction by about 4%–6%, and the underestimation
is smaller than in CMIP5models for mostWSs. This difference,
however, can be in part due to the generally lower horizontal
model resolutions in the CMIP5 ensemble. At the same time,
model cloud optical depth is higher than ISCCP in five WSs,
the same in two, and lower only in polar clouds, but the polar
model overestimation could be due to underestimation of

TABLE 3. CMIP5 and CMIP6 model WS normalized RFO absolute deviation from the ISCCP-H WS (in %). The quantity is derived
by averaging the absolute differences of model WS RFO from the ISCCP-H value and normalizing to the ISCCP-H value.

DCN MDS CIR PLR MID FRW SHC STC AVG

CMIP6 (%) 21.4 20.9 49.8 69.8 35.8 12.12 48.9 34.9 36.7
CMIP5 (%) 52.2 31.6 24.6 67.7 44.0 19.4 39.7 45.5 40.6

FIG. 7. Relative frequency of occurrence of the eight cloud WSs and clear sky, from the ISCCP-H dataset (solid
line) and the AMIP twentieth-century simulations of the CMIP6 and CMIP5 models (model symbols are indicated
in the label). The gray bar around the line indicates the ISCCP-H interannual variability. The larger symbols on the
right column correspond to the CMIP6 versions of the models and the smaller symbols on the left side to the CMIP5
versions of the models. The X sign is the mean of each model ensemble.
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cloud optical depth in ISCCP retrievals over ice surfaces.
The CMIP5 ensemble similarly has higher optical depth than
ISCCP in most WSs. Overall, it can be said that CMIP6 models
still follow the ‘‘too few–too bright’’ paradigm found in all
previous generations of climate models (e.g., Webb et al. 2001;
Weare 2004; Karlsson et al. 2008; Nam et al. 2012). The cloud
top pressure of the deep convective andmidlatitude stormWSs
is larger than that found in ISCCP, implying generally lower
cloud tops in the model simulations, while for most other WSs
the cloud top pressures are generally lower than in ISCCP,
indicating higher model cloud tops for cirrus, polar, and all
low clouds. The bias for low cloud top pressures may be even
worse because the ISCCP-H estimates seem to be biased low
(Stubenrauch et al. 2013). Finally, the RFO geographical pat-
tern differences between the CMIP6 model and ISCCP WSs
are very small for deep convective, midlatitude storm, middle-
top, and shallow cumulus WSs, meaning that the cloud types
that are associated with the ITCZ and the midlatitude storm
tracks show almost identical patterns with the observed ones.

The cirrus and fair weather WSs, cloud types that tend to be
more widespread, show the largest pattern differences from the
observations. Note, however, that part of the difference in the
pattern may represent differences in the RFO values between
themodel and ISCCPWSs. TheWS pattern biases found in the
present analysis are similar between the CMIP6 and CMIP5
ensembles and are both significantly smaller than the pattern
differences found in a similar analysis of CMIP3 models by
Williams and Webb (2009).

The distribution of shortwave and longwave cloud radia-
tive effect (SWCRE and LWCRE) among the model weather
states is evaluated in Fig. 9 against the observational distribu-
tions, derived from compositing the ISCCP-FH and CERES
radiative flux data in the merged ISCCP-H weather states. The
ISCCP-FH radiative flux retrievals are derived through the
application of a radiative flux calculation on the ISCCP-H
cloud field, and therefore they represent the radiative fluxes
that the models would calculate if they faithfully simulated
the ISCCP-H WS cloud property distributions. The differ-
ence between the ISCCP-FH and the CERES CRE values
can be seen as the observational uncertainty, or even as the
ISCCP-FH bias against the more direct CERES flux retrievals.
Figure 9 shows that in all WS categories the observational
uncertainty is much smaller than the model spread, and that
in certain categories clear model biases can be identified.
The largest model bias occurs in the middle top WS, where
the model mean cloud shortwave cooling is too small by
20–30Wm22, due primarily to the underprediction of cloud
fraction in that WS (cf. Fig. 8). A smaller SWCRE bias occurs
in the midlatitude storm and the stratocumulus WSs, due
to the underprediction of cloud fraction despite the over-
prediction of cloud optical depth in those categories. In
contrast, SWCRE is too strong in shallow cumulus clouds,
due to an overprediction of cloud cover and optical depth in

FIG. 9. Mean values of CMIP6 model WS (top) shortwave cloud
radiative effect (SWCRE) and (bottom) longwave cloud radiative
effect (LWCRE). The CMIP6 model ensemble mean is indicated
with an X, the CMIP5 mean with a plus sign (1), and the mean
values for the ISCCP-H WSs derived from the CERES and the
ISCCP-FH radiative flux datasets are noted with horizontal bars.
Model symbols are as indicated in Fig. 6. Positive (negative) values
indicate radiative warming (cooling).

FIG. 8. Difference between CMIP6 model and ISCCP-H WS
mean (a) cloud fraction, (b) cloud optical depth, and (c) cloud top
pressure, and (d) root-mean-square difference between the WS
RFOmaps of the CMIP6models and ISCCP-H. The CMIP6model
ensemble mean difference is indicated with an X and that for
CMIP5with a plus sign (1). CMIP6model symbols are as indicated
in Fig. 6.
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those clouds. In the LWCRE evaluation, the only clear bias is
in themidlatitude stormWS, where the lower model cloud tops
and cloud fraction (Fig. 8) result in weaker LW cloud effects in
all models. The somewhat weaker LW warming in the cirrus
and middle-top WSs can only be explained by the lower cloud
fraction in those regimes.

The distribution of precipitation among the model WS
is evaluated in Fig. 10, against the same distribution from
a composite of TRMM rain rate retrievals on the merged
ISCCP-H weather states. The large majority of the observed
precipitation falls in the deep convective andmidlatitude storm
WSs, with contributions from the cirrus (which may be due to
platform space–time mismatch near convective systems) and
the middle top WSs, and this distribution is present in the
model simulations as well. However, CMIP6 models show a
spread in precipitation rate in the deep convective and to a
lesser extent the storm cloud WS that is very large, with the
extreme models differing by as much as 10–15mmday21 in
deep convective precipitation rates. In the ensemble mean,
CMIP6 models simulate higher, more realistic convective
precipitation rates than CMIP5 models. Also, all models tend
to show a small overestimation of the low rain rates in all WSs
other than the convective and storm cloud ones, indicating the
presence of excess drizzle in the model simulations.

4. Discussion

Acluster analysis of TAU-PC histograms of the new, higher-
resolution ISCCP-H dataset produces cloud regimes that are
very similar to the lower-resolution ISCCP-DWSs. The main
difference lies in the elimination of the ISCCP-D ‘‘thin stra-
tocumulus’’ category and the splitting of those clouds be-
tween the stratocumulus and shallow cumulus ISCCP-HWSs.
This happens because the ISCCP-H dataset resolves better
the stratocumulus-to-shallow cumulus transition, while in the
coarser ISCCP-D retrievals the mixed-cloud transition scenes
are classified as a thin stratocumulus category. Another im-
portant difference is found in the polar cloud WS, which has a
different, more consistent with the active retrievals TAU-PC

distribution than the ISCCP-D one and is much better confined
to the polar regions. The overall consistency between the two
ISCCPWS analyses is indicative of the similarities between the
two ISCCP datasets, with the differences coming mostly from
the higher horizontal resolution of the ISCCP-H data and from
the changes in the cloud property retrievals over ice-covered
surfaces. This implies that results derived from analyses of the
ISCCP-DWSs of Tselioudis et al. (2013) will remain consistent
if the ISCCP-H WSs are used instead, unless polar clouds are
the analysis focus.

The evaluation of the CMIP6 models against weather states
derived from cloud property cluster analysis shows that in the
ensemble average the models are producing an adequate
representation of the frequency and geographical distribu-
tion of the WSs, with some improvements compared to the
WSs derived for the CMIP5 ensemble. However, in some
WSs like cirrus and stratocumulus, the good agreement of
the model ensemble mean with the observations comes from
averaging two groups of models that significantly overpredict
and underpredict the RFO values. In addition, significant
biases exist in the cloud properties of the modelWSs, such as
the model underestimation of cloud fraction in middle-top
clouds and secondarily in midlatitude storm and stratocumulus
clouds, that result in an underestimation of cloud shortwave
cooling in those regimes. The cloud defined WSs constitute a
useful framework to initiate a ‘‘regime based’’ evaluation of
climate models.

As shown in the case of the boundary layer clouds, however,
cloud distributions with similar radiative characteristics can
still derive from distinct atmospheric processes. In the context
of model evaluation and its use to improve cloud simulations,
where knowledge of the mechanisms involved in cloud for-
mation and dissipation is crucial, it may be necessary to further
split the WSs to obtain consistent dynamic regimes. As an
example, Fig. 11 shows the evaluation of the CMIP6 models
separately for the RFO of the easterly and westerly components

FIG. 11. Relative frequency of occurrence of the easterly and
westerly components of the shallow cumulus (SHC) and stratocu-
mulus (STC) WSs, from the ISCCP-H dataset (solid line) and the
AMIP twentieth-century simulations of the CMIP6 models (model
symbols are indicated in the label). The gray bar around the line
indicates the ISCCP-H interannual variability. The X sign is the
mean of each model ensemble.

FIG. 10. Mean values of CMIP6 model WS precipitation. The
CMIP6 model ensemble mean is indicated with an X, the CMIP5
mean with a plus sign (1), and the mean values for the ISCCP-H
WSs derived from the TRMM precipitation dataset is noted with a
horizontal bar. CMIP6 model symbols are as indicated in Fig. 6.
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of the SHC and STCWSs. It can be seen that for the SHCWS,
which is underestimated in the whole by the models (Fig. 7),
this underestimate is more pronounced in the tropical (east-
erly) than in the midlatitude (westerly) component of the WS.
For the STC WS, which is slightly overestimated in the whole
(Fig. 7), this overestimate comes from an underestimate of the
tropical component and an overestimate of the midlatitude
one. Overall, models tend to underpredict stratocumulus and
shallow cumulus amounts in the tropical trade wind regime
more than in the midlatitude cold air outbreak regime. This
information provides additional insight into the processes that
may be responsible for potential model cloud deficiencies,
but further dynamical or thermodynamical compositing may
be needed to meaningfully resolve cloud formation and dis-
sipation processes.

As illustrated in Fig. 3 for the case of a midlatitude storm,
the cluster analysis–derived WSs provide regime definitions
that correspond to distinct combinations of dynamic and
thermodynamic conditions that result in the formation of the
distinct cloud type distributions. The evaluation of CMIP6
climate models using the WS distributions constitutes a mean-
ingful regime-based evaluation, which can provide information
pointing to the processes responsible for potential model defi-
ciencies. Furthermore, if climate change is seen as a shift in
the distribution of atmospheric regimes, then the ability of
the models to reproduce the distribution of cloud, radiation,
and precipitation properties among the regimes provides a
test for their ability to simulate climate feedbacks resulting
from atmospheric regime distribution shifts.
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