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The objective of this paper is to better isolate the snow signature in microwave signals to be able to explore the
ability of satellitemicrowavemeasurements to determine snowpack properties. The surfacemicrowave effective
emissivities used in this study are derived from SSM/I passive microwave observations by removing the
contributions of the cloud and atmosphere and then separating out the surface temperature variations using
ancillary atmospheric, cloud and surface data. The sensitivity of the effective emissivity to the presence/absence
of snow is evaluated for the Northern Hemisphere. The effect of the presence of snow, the variation of land types,
and temperature on the emissivities have been examined by observing the temporal and spatial variability of
these measurements between 19 and 85 GHz over the Northern Hemisphere. The time-anomaly of differences
between effective emissivity at 19 V and 85 V enabled the constant effects of land surface vegetation properties
to be removed to isolate the snow signature. The resulting 12-year snow signal combined with skin temperature
data can detect the existence of snow cover over the Northern Hemisphere on daily basis. The results of this
method compared with the operational NOAA weekly snow cover maps agree at 90% of locations and times.
Most of the disagreements could be explained by rapid evolution of snow emissivities associated with freeze–
melt–refreeze cycles and precipitation (snowfall), and some of them by the space–time resolution differences
of the microwave and operational snow cover determinations. These results compared with the NISE, NOAA
IMS, CMC, and MODIS, and snow products agree within 78% to 92%.
ahroudi),
© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Seasonal snow typically covers 30% of the total land area of the
Northern hemisphere. Snow cover is a significant climate indicator
and an important factor controlling the amount of solar radiation
absorbed by earth. Snowmelt resulting from a warming trend
would increase the absorption of solar radiation, a positive feedback.
Moreover, snow plays a different role than liquid water in the pro-
cesses affecting surface evaporation (latent heat), soil moisture sup-
ply to vegetation and runoff. Snow acts as a temporary reservoir of
water that is crucial to water supply in many regions (Robinson,
Dewey, & Heim, 1993). Because of the complex interaction of snow
with the landscape and varying atmospheric conditions, monitoring
the spatial and temporal variability of snow properties at relatively
high space–time resolution provides valuable information on surface
hydrology and radiation.

The use of satellite remote sensing for mapping snow cover and
measuring snow characteristics has a long history reaching back to
the 1960s. Dietz, Kuenzer, Gessner, and Dech (2012) reviewed all
the available methods of measuring snow using satellite data and
looked at each method's advantages and disadvantages. For exam-
ple, passive microwave radiances from satellites overcome the
main limitations of visible measurements by being able to sense
the surface at night and through non-precipitating clouds, improving
time resolution to near daily. Although spatial resolution is poorer
and the sensitivity to small amounts of snow is less than for visible
radiation measurements, the microwave signal is also sensitive to
other snow properties such as density, depth, and crystal-size distri-
bution. However, this sensitivity is confounded by sensitivity to the
variations of other land surface properties such as temperature, sur-
face wetness, melting–refreezing cycles, and embedded or covering
vegetation.

The main objective of this paper is to better isolate the snow signa-
ture in microwave signals to explore the ability of satellite microwave
measurements to determine other properties of snowpack besides
cover extent. The microwave signal acquired from the satellite is the
combination of the land surface and atmospheric contributions. The
microwave emission of the land surface itself is the product of its phys-
ical temperature and the surface emissivity (this product is the bright-
ness temperature). The surface emissivity represents the intrinsic
physical characteristics of the land surface and is sensitive to variations
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of vegetation density, soil moisture, surface composition, and standing
water at the surface as well as snow properties. Thus, to isolate the
changes in satellite microwave measurements associated with snow,
we need to account for all the other contributions to the signal to devel-
op generally valid, global measurement of snow properties such as
snow depth, snow grain size, and snow water equivalent.

There are number of studies using passive microwave satellite
observation over snow to estimate snow properties (Chang, Foster, &
Hall, 1987; Foster et al., 1996; Grody & Basist, 1996; Hall et al., 1991;
Kelly & Chang, 2003; Kunzi, Patil, & Rott, 1982), but most of these stud-
ies analyze microwave brightness temperatures alone. Brightness tem-
perature variation is strongly affected by the variation of the surface
physical temperature as well as changes in other land surface proper-
ties. Although using differences of brightness temperatures at different
frequencies substantially reduces the surface temperature dependen-
cies, global applications of such results have been questioned because
of the complex signature of snow on varying landscapes as well as the
relatively low spatial resolution of passive microwave measurements.
Many liquid water clouds produce changes in microwave brightness
temperatures similar in magnitude to that of water vapor [Lin &
Rossow, 1994].

In this studywe use land surface emissivities retrieved from the pas-
sive microwave brightness temperature (Aires, Prigent, Rossow, &
Rothstein, 2001, see Section 2 data), by removing the contributions of
cloud and atmosphere and separating surface temperature. The remain-
ing variability in the emissivities is due to changes of the land surface
characteristics (soil moisture, vegetation density, surface wetness) as
well as the snow properties. To investigate removal of the other non-
snow surface effects from the signal, we examined the space–time var-
iability of land emissivities for different vegetation categories with and
without the presence of snow. The effect of land is removed from the
signal (approximately) by subtracting the mean snow-free emissivity
of each location from its emissivity with snow present. The operational
NOAA snow cover charts, providing weekly snow cover from satellite
visible image analysis, are used for snow/snow free separation in this
part of the analysis. When all the contributions to the signal except
snow have been removed, the remaining variability of the snow signal
is examined over time for each location. Infrared skin temperatures
(Prigent, Aires, & Rossow, 2003a,b) and the reference snow cover (see
Section 2) data are used to find an emissivity-dependent threshold
that distinguishes between snow/snow free land from the microwave
emissivities.

The satellite observations and the ancillary datasets used in this
study are described in Section 2. In Section 3, the steps to isolate the
snow signal are described. Also in this section we emphasize the spatial
and temporal variability of the emissivities over snow-covered regions
to characterize their fluctuationswith vegetation, temperature and pre-
cipitation. In Section 4 a global snow cover identification technique is
proposed and is compared with the operational NOAA snow cover
charts. As a test of sensitivity the specific cases for which our results
and the operational snow charts do not agree are examined to see if
these disagreements can be explained. Section 5 compares the results
of our snow cover detection with the newer daily NOAA IMS snow
flag, the Canadian Meteorological Center (CMC) snow depth station
data, the MODIS snow cover product, and the Near-Real-Time Ice and
Snow Extent (NISE) from microwave. Section 6 examines the variation
of snow cover over thewhole 12-year record and compares some inter-
esting features with results from other available snow cover products.
Section 7 concludes this study.

2. Data

2.1. Land microwave emissivity (EM) & skin temperature (TS)

The SSM/I instruments on board theDefenseMeteorological Satellite
Program (DMSP) polar orbiters observe the Earth twice daily (typically
near dawn and dusk)with observing incident angle close to 53° forflat a
surface and a field-of-view decreasing with frequency from 43 km ×
69 km at 19 GHz to 13 km × 15 km at 85 GHz (Hollinger, Lo, Poe,
Savage, & Pierce, 1987). The SSM/I channels measure brightness tem-
peratures (TB) at 19.3 GHz, 22.2 GHz, 37.0 GHz and 85.5 GHz at vertical
and horizontal polarizations except at 22 GHz, which is only in vertical.
SSM/I was the first passive microwave satellite that had external cali-
bration by viewing a mirror that reflects cold space and a hot reference
target once each scan, every 1.9 s (Gentemann,Wentz, Brewer, Hilburn,
& Smith, 2010).

Prigent, Aires, Rossow, and Matthews (2001) and Prigent, Rossow,
and Matthews (1997) determined land surface microwave emissivi-
ties from the SSM/I brightness temperatures by removing the effects
of the atmosphere, clouds, and rain (Aires et al., 2001) using ancillary
data from ISCCP (Rossow & Schiffer, 1999) and the NCEP reanalysis
(Kalnay et al., 1996). First, the cloud-free SSM/I observations are iso-
lated using collocated visible/infrared satellite observations from
ISCCP. The cloud-free atmospheric contribution is then calculated
from temperature–humidity profiles from the NCEP reanalysis. Fi-
nally, surface skin temperature (TS) is taken from ISCCP (corrected
for the original assumption of unit IR emissivity in the ISCCP product
using surface-type-dependent IR emissivities) to determine the
surface emissivities for the seven SSM/I channels. The calculated
emissivities can be related to the intrinsic surface properties inde-
pendent of atmospheric contributions or the variations of TS. The
true emissivity is defined by the normalization of TB by the effective
soil temperature corresponding to the contributions of all the surface
layers of the ground weighted by their attenuation (Wigneron,
Chanzy, de Rosnay, Rudiger, & Calvet, 2008). Hence the emissivities
used in this paper are “effective” values because they are derived
from the normalization of TB by the skin temperature (TS). The spec-
tral gradient of effective emissivities is an index that approximates
the true spectral emissivity difference.

The effective emissivities are determined on an equal area grid
equivalent to 0.25° × 0.25° at the equator and are compiled daily
from 1992 to 2004 (recently extended through 2008). For illustra-
tion, monthly mean effective emissivities (EM) are shown in Fig. 1
for 19 V, 37 V, and 85 V GHz for December 2002. In this paper, we
will use EM followed by numbers to indicate frequency and “H” or
“V” to indicate polarization, for example, EM19V or EM85H. If no
letter is given, it means that the statement applies to both polariza-
tions. EM followed by numbers and letters representing two chan-
nels, for example EM19V-37V or EM19H-85H, will represent the
difference of effective emissivities at two frequencies. We also con-
sider temporal anomalies of effective emissivity differences as the
difference between the instantaneous effective emissivity differ-
ence at a location and a time-averaged value at the same location;
we represent such quantities by δEM followed by numbers and let-
ters representing the two channels, for example δEM19V-37V or
δEM19H–85H.

The skin temperature (TS) is the physical temperature of the Earth's
surface (which can be closer to the canopy top for dense vegetation).
The infrared surface brightness temperature (IR emissivity assumed to
be unity) is determined at 3-hour intervals since 1983 over the globe
every 30 km from a combination of polar and geostationary satellite
(Rossow & Schiffer, 1999). Two values of TS are reported; one based
on the IR clear sky radiances from the 5-day composites and one
based on any available clear pixel IR radiances; the former values are a
better estimate of TS because the latter values are slightly cloud contam-
inated by design (Rossow & Garder, 1993). The ISCCP TS values are
corrected for non-unit emissivities using a land classification to specify
IR emissivities (Zhang, Rossow, Lacis, Oinas, & Mishchenko, 2004). The
corrected ISCCP TS values at 3-h intervals are interpolated to match
the SSM/I over flight time and mapped to the same 25 km grid. For
illustration, the monthly mean skin temperatures for December 2002
are presented in Fig. 1.



Fig. 1. Dec 2002 mean effective emissivity map for 3 channels (19H, 37H, 85H), with the corresponding mean skin temperature and snow cover map.
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2.2. Snow cover

The NOAA Operational snow cover product is used to develop the
microwave-based snow detection algorithm and another four products
(IMS, CMC,MODIS, and NISE) are used to evaluate the final product.We
focus on the Northern Hemisphere in this study.

2.2.1. NOAA Operational Weekly Snow Cover Charts (SC)
The operational Northern Hemisphere Weekly Snow and Ice Cover

Charts, prepared by the Synoptic Analysis Branch at National Oceanic
and Atmospheric Administration (NOAA) since 1966 (Dewey & Heim,
1982) are used in the ISCCP cloud analysis to indicate the presence of
sea ice and snow in separating clear and cloudy scenes (Rossow &
Garder, 1993). The ISCCP version of this information is available in a
1° equal-area grid at 5-day intervals (interpolated from the original 7-
day NOAA product), where permanent ice cover locations in Greenland
and Antarctica are also labeled as snow, but has been re-projected to the
matched ISCCP and SSM/I pixels twice daily on a 25 km grid for conve-
nience. This product also assumes snow cover for all regions in winter
darkness. For illustration, the monthly mean snow cover for December
2002 is presented in Fig. 1. This visible-radiant-based snow cover prod-
uct is used to develop the most sensitive microwave snow detection
algorithm.

2.2.2. NOAA Interactive Multisensor Snow and Ice Mapping System (IMS)
The National Ice Center (NIC) of NOAA/NESDIS produces a daily

snow and ice cover product for the Northern Hemisphere, Continental
United States, Alaska, Afghanistan and Asia/Europe. The data are
derived from several data sources, including the POES AVHRR and
AMSU, GOES/Imager, GMS, and Meteosat. In 1997, the Interactive
Multisensor Snow and Ice Mapping System (IMS) became operational,
giving the satellite analysts improved access to imagery and drawing
tools. Since the inception of IMS, the charts have been produced daily
at nominal resolutions of 24 km and 4 km in a polar stereograph projec-
tion (NOAA/NESDIS/OSDPD/SSD, 2004). The 24 km version was used in
this study since it better matches with our 25 km passive microwave
dataset.

2.2.3. Canadian Meteorological Centre (CMC) snow depth
Canadian Meteorological Centre (CMC) compiles the Northern

Hemisphere snow depth analysis data from surface synoptic observa-
tions (synops), meteorological aviation reports (metars), and special
aviation reports (SAs) acquired from theWorld Meteorological Organi-
zation (WMO) information system for use in the CMC analyses. The
CMC dataset includes daily observations from 1998 through 2010. The
snow depth data are in polar stereographic projection with 24 km
resolution (Brown & Brasnett, 2010).

2.2.4. Moderate Resolution Imaging Spectroradiometer (MODIS) snow
cover

NSIDC archives and distributes snow cover and sea ice data products
obtained from the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor on NASA's Earth Observing System (EOS) Aqua and
Terra satellites. The MODIS product contains snow cover, snow albedo,
fractional snow cover, and Quality Assessment (QA). The data are
gridded at 500 m intervals in a sinusoidal map projection over the
whole globe. The results are reported daily at any location that is illumi-
nated and cloud free; thus, over thewintertime due to the longer nights
and cloudy sky, less than 50% of land is observed on a typical day. The
snow cover determinations are based on a snow-mapping algorithm
that employs a Normalized Difference Snow Index (NDSI) and other
test criteria (Hall & Salomonson, 2006).

2.2.5. Near real time ice and snow extent (NISE)
The Near-Real-Time SSM/I-SSMIS EASE-Grid Daily Global Ice Con-

centration and Snow Extent product (Near-Real-Time Ice and Snow
Extent, NISE) provides daily, global near-real-time maps of sea ice con-
centrations and snow extent. The National Snow and Ice Data Center
(NSIDC) creates the current NISE product using passive microwave
data from the Special Sensor Microwave Imager/Sounder (SSMIS) on
board the Defense Meteorological Satellite Program (DMSP) F17 satel-
lite. Snow extent is mapped separately using an algorithm developed
for Scanning Multichannel Microwave Radiometer (SMMR) data
where, snow depth = 1.59 ∗ (TB18H–TB37H) cm (Chang et al., 1987)
and the algorithm was modified for use with SSM/I data as described
in Armstrong and Brodzik (2001). NSIDC modified the snow extent
mapping algorithm in March 2002, based primarily on a recent study
by Armstrong and Brodzik (2002). The snow/ice maps are in EASE-
Grid projectionwith 25 km resolution. This product is used to represent
other snow cover products obtained by application of microwave
brightness temperature algorithms (Nolin, Armstrong, & Maslanik,
1998).

2.3. Vegetation

A 1° spatial resolution land surface vegetation classification based on
Matthews (1983) distinguishes a large number of vegetation types
grouped into 9 classes: rain forest, deciduous forest, evergreen forest,
shrubland, tundra, grassland and desert. Associated with the vegetation
classification is a land use dataset that distinguishes five levels of culti-
vation intensity, ranging from 0 to 100% for 1° cells (Matthews, 1983).
We focus on the five types of vegetation that experience seasonal
snow cover: evergreen and deciduous forests, shrubland and grass-
lands, and tundra, which cover together about 80% of the whole
Northern Hemisphere.

2.4. Precipitation

TheGlobal Precipitation Climatology Project (GPCP)was established
by the World Climate Research Program to quantify the distribution of
precipitation around the globe over many years. Over land data from
over 6000 rain gauge stations, and satellite geostationary and low-
orbit infrared and passive microwave are merged to estimate rainfall
from 1979 to the present. We use the GPCP-1DD version 6 product
that reports precipitation at 1° and daily intervals (Adler et al., 2003;
Huffman et al., 1997).

2.5. Space–time sampling of data

Each of the datasets described above has different intrinsic spatial
and temporal resolutions. In order to compare all the snow datasets
and the effective emissivity, skin temperature, vegetation, and precipi-
tation data, all of these products were projected onto the same equal
area, 25 kmmap grid at daily intervals. These conversions are done by
the simplest procedure of reporting the nearest in space–time value
from the original product in the target 25 km, daily version. Such a re-
projection creates differences when comparing these datasets, so we
have investigated the effects of changing space and time resolution
using our 25 km, daily snow product to test how much the snow
cover differs when compared to itself but in degraded resolution form.
Spatial resolution was reduced in three different ways: averaging all
the 0.25-degree pixels in a 1-degree grid to obtain a snow fraction,
labeling a 1-degree grid as 100% snow if at least one 0.25 degree grid
is labeled as snow and labeling a 1-degree grid as 100% snow if a major-
ity of the 0.25-degree grids are labeled as snow. Comparing these 1-
degree datawith the original 0.25-degree data produces a disagreement
frequency of about 3% (when comparing absence or presence). Tempo-
ral resolutionwas reduced fromdaily toweekly in similar fashion: aver-
aging to obtain a snow fraction, labeling the week as 100% snow if any
day in the week is labeled as snow, and labeling a week as 100% snow
if the majority of days are snow covered. Comparing the new weekly
data to the original daily data produces a disagreement frequency of



Fig. 2. Scatter plots of different channels of effective emissivity versus each other where the color bar shows the percentage of distribution of the point.
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about 4%. These tests indicate that disagreement frequencies of at least
3%–4% can be produced by themis-matched space and time resolutions
of the products. That the sampling errors are so small also suggests that
snow cover is fairly persistent in time and tends to cover large areas,
producing most of the disagreement near the edge of the snow-
covered region.

3. Variability of microwave emissivities

3.1. Frequency dependence

Land surface microwave effective emissivities over snow exhibit
large spatial variability for a given month (Fig. 1). In December, for in-
stance, the land north of 45° is fully covered by snow yet the effective
emissivity values range between 0.6 and 1. The same fully snow covered
area can have EM19H values between 0.9 and 1, between 0.8 and 1 for
EM37H, and between 0.6 and 1 for EM85H. In general higher frequen-
cies exhibit a larger range of land surface effective emissivities for
snow-covered areas. The differences in EM range and the structure
shown in plots of one channel against another over the whole northern
hemisphere (e.g., Fig. 2) demonstrate that each channel provides more
information about the surface than a simple linear relationship.
Table 1
Statistics of the 7 channels ofmicrowave effective emissivity separated for snowand snow
free surface.

19V 19H 22V 37V 37H 85V 85H

Min Snow 0.931 0.845 0.916 0.794 0.744 0.690 0.648
Land 0.803 0.661 0.797 0.812 0.669 0.839 0.711

Max Snow 1.005 0.975 1.001 0.967 0.940 0.943 0.924
Land 0.990 0.958 0.981 0.966 0.946 0.961 0.946

Mean Snow 0.977 0.921 0.962 0.900 0.851 0.813 0.880
Land 0.935 0.875 0.928 0.923 0.872 0.919 0.877

Std Snow 0.028 0.045 0.028 0.047 0.062 0.079 0.088
Land 0.058 0.090 0.055 0.045 0.080 0.036 0.068

Mode Snow 0.977 0.949 0.966 0.914 0.886 0.774 0.876
Land 0.954 0.926 0.948 0.940 0.912 0.935 0.912
Although the scatter plot of EM19V vs. EM22V in Fig. 2 shows a quasi-
linear relation with little scatter, suggesting redundant information,
there is actually some structure even in this case. Although the EM37V
vs. EM85V plot also shows a quasi-linear relationship, the larger scatter
(compared to the EM19V vs. EM22V plot) indicates that there is addi-
tional information provided by using both channels. In the plots of
EM19 vs. either EM37 or EM85 there is a little variability in EM37 and
EM85 while there is a large change in EM19. These variations must be
due to land surface and snow properties since the cloud contamination
and atmospheric effect are removed from the data and coastal pixels
were avoided (Aires et al., 2001). The complex plots for these channel
combinations show that the most complete information comes from
using all the channels; especially notable are the plots of EM19 vs. either
EM37 or EM85.

The goal of thiswork is tomaximize the sensitivity ofmicrowave sig-
nal to the presence of snow. To achieve this goal we have to reduce the
ambiguities. In other words, we are trying to un-mix all the contribu-
tions to themicrowave signal to themaximumpossible extent to isolate
snow signal. We examined the frequency distributions of each twice-
daily EM value (atmospheric and surface temperature effects removed)
separated between snow-covered and snow-free locations using the
daily snow flag from the NOAA operational product. Table 1 is the sum-
mary of the statistics for the 12 winter seasons (1993–2004) for the
northern hemisphere showing the minimum, maximum, mean, stan-
dard deviation, and mode of the EM distributions for each channel for
snow-covered and snow-free (called land) locations separately. Fig. 3
shows thehistograms of the individual EMvalues for four channels, sep-
arated into snow-covered and snow-free locations (the histograms are
normalized to total population of the data in percentages). The table
and figure clearly show both large ranges of EM values with a concen-
tration of values between 0.85 and 0.95. Notably, the range of both the
snow-covered and snow-free effective emissivities for the lowermost
frequencies is similar, with the snow-free mode value shifted to slightly
lower values. The large overlap of the snow-covered and snow-free dis-
tributions shows that EM19 is not very sensitive to the presence of snow
and that the effective emissivities still exhibit large variationswith loca-
tion. At higher frequencies (37 and 85, H polarization not shown) the

image of Fig.�2


Fig. 3. Global normalized histograms of the effective emissivity for 4 channels separated for snow and snow free surface using the NOAA snow cover map.
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range of snow effective emissivity values is larger than the range for
snow-free locations, especially EM85, indicating a much larger sensitiv-
ity to the presence of snow. However, the overlap of the snow-covered
and snow-free effective emissivities is still substantial, especially EM37,
so detection of all snow-covered cases is not straightforward.

The similar distributions of EM19 and EM85 for snow-free condi-
tions but the very different sensitivity of these two channels to the pres-
ence of snow suggest looking at effective emissivity differences to find a
distinct threshold for separating the snow-covered from snow-free
locations. In particular, Fig. 3 suggests that the snow-free values of
Fig. 4. Global normalized histograms of the effective emissivity for 4 combination chan
EM19–37 and EM19–85 will be small, close to zero, but the values for
snow-covered locations will be much larger. All possible effective emis-
sivity differences were examined to look for the combination with the
least overlap between the snow-covered and snow-free distributions.
The four smallest overlap percentages from all combinations are from
EM19V–37V (11.4%), EM19H–37H (11.4%), EM19V–85V (10.6%) and
EM19H–85H (10.5%), where the next smallest overlap percentage is
around 23%. The snow-free mean effective emissivity difference is
very close to zero for these four combinations, EM19V–37V (0.003),
EM19H–37H (0.005), EM19V–85V (0.002) and EM19H–85H (0.000).
nels separated for snow and snow free surface using the NOAA snow cover map.

image of Fig.�3
image of Fig.�4


Fig. 5. Scatterplot of effective emissivity channel 19V–37V vs. 19H–37H (left) and 19V–37V vs. 19H–37H (right).
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EM19V–22V and EM37V–85V also have (0.001) snow-free mean but
their overlap percentages are 23% and 34% respectively. The same four
channel combinations have snow-free standard deviations that are also
the smallest where EM19V–37V and EM19H–37H are 0.021 and EM19V–
85V and EM19H–85H are 0.011. Fig. 4 shows the snow-covered and
snow-free effective emissivity differences for the four best combinations.

Fig. 4 shows clearly that EM19–85 provides the best separation of
snow-covered from snow-free locations with only a small overlap of
the two distributions. Fig. 5 shows that, from the standpoint of separat-
ing snow-covered from snow-free locations, the two polarizations are
not significantly different, although the scatter about the quasi-linear
relationships indicates that there is still some information to be gained
using all channels. Although we continue our search for the best snow
detection method by examining results from both polarizations, we
will show only the V polarization results henceforth. We emphasize,
however, that retrieval of snow properties should again consider all
the channels to exploit the full information content.
Fig. 6. Normalized histograms for 2 combination channels of effective emissivities separated fo
free pixels.
3.2. Vegetation dependence

To understand the overlapping parts of the histograms in Fig. 4, we
investigate the causes of the range of snow-free effective emissivity
differences. The mean summer maps (June, July, Aug) of the effective
emissivity differences, where the same snowy pixels are snow free,
were examined. The statistics show that, when there is no snow on
the ground, themean summer effective emissivity difference still varies
significantly with surface type and geographically within each surface
type (Fig. 6) with somewhat more difference among different vegeta-
tion types for EM19–85 than for EM19–37. Although the distributions
in Fig. 6 suggest that the snow-free effective emissivity differences
(and effective emissivities, not shown) are associated with differences
in vegetation, the large range of values for each vegetation type shows
that vegetation type provides only a weak discrimination among differ-
ent locations. In other words, two different locations classified as the
same vegetation type can exhibit variation of effective emissivity
r different kinds of land cover using vegetation classification over summer 2002 for snow

image of Fig.�5
image of Fig.�6


Fig. 7. Anomaly effective emissivity time series for 1 year (2002) for 2 combination channels for 5 different vegetation types.
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differences (and effective emissivities) that are as large or larger than
the contrast between two different vegetation types. Nevertheless, we
use the vegetation classification data to separate the effective emissivity
difference distributions, mostly for illustrative purposes. Although we
examined global results using all nine land cover classes, we focus on
the five types where there is winter snow cover: evergreen forest
with 20%, deciduous forest with 22%, grassland with 19%, shrubland
with 7%, and tundra with 12% of the total Northern Hemisphere land
area. The sum of these 5 vegetation types covers 80% of the whole
Northern hemisphere and will be counted as our total area for the rest
of the paper. Fig. 6 shows the distributions of EM19–37 and EM19–85
for these locations from the summer season.

The fact that the range of effective emissivity differences within a
vegetation class is as large or larger than the difference between vegeta-
tion classes suggests a different approach for reducing the geographic
variations of the effective emissivities of the land surface underlying
the snow cover. We calculate for each location (at 25 km intervals)
the temporal anomaly of the effective emissivity differences (δEM)
with respect to its summer-season mean value (Eq. 1).

δEM19−37 ¼ EM19−37– EM19−37½ �
δEM19−85 ¼ EM19−85– EM19−85½ � ð1Þ

where [] indicates the average over the summer season at the same
location.

Fig. 7 shows the annual progression of δEM19–37 and δEM19–85
averaged for each of the five vegetation types. There are three notable
features in this figure. First, the variability of δEM during the summer
is extremely small compared with the seasonal variations produced by
snow. In other words, the background land surface values of δEM are
very stable in time. Second, that the average δEM values for snow-free
conditions are so small indicates that we have eliminated most of the
“non-snow” variability using these quantities. Third, we note that the
effects of snow are larger for δEM19–85 than for δEM19–37 as might
be expected. Finally the figure shows that the effect on the δEM values
is largest for the tundra and evergreen locations.
The (approximately) 10% overlap of the snow-covered and snow-
free distributions of effective emissivity difference has been reduced
by about a factor of 3–4 for the anomaly emissivity difference. The re-
duction is largest for EM19–85 as expected. By subtracting the mean
summer effective emissivity difference from the daily effective emissiv-
ity differences in winter, we are taking out a constant offset approxi-
mately representing the effect on the microwave signal from the
underlying land surface. Since themicrowave sensitivity to the underly-
ing surface can disappear for higher frequencies and larger snowdepths
(50 to 100 cmat 37GHz depending on density and grain size (Liang, Xu,
Andreadis, Josberger, & Tsang, 2008)), this approach can underestimate
the snow signal for deeper snow cover. Nevertheless, variations in δEM
should have only the snow signal without the geographic variations of
vegetation properties. The anomaly values for snow free areas become
much smaller and closer to zero (generally less than 0.05) and the
snow signal becomes more distinct.

The histograms (normalized by total sample size) of δEM19–85 for
all 5 vegetation types for the whole 12-year record are shown in Fig. 8
to illustrate the separation of snow-covered and snow-free signals
that has been achieved. The range of snow-free values is noticeably
smaller and concentrated near zero. The range of snow-covered values
is shifted to larger values and a clearer separation of snow/snow free
is apparent. Only about 1% of the snow-free δEM19–85 values are
above 0.05. We conclude that any value of δEM19–85 above 0.05 is
snow-covered, whereas values below 0.05 are still a mix of snow-
covered and snow-free locations.

3.3. Temperature dependence

The overlapping snow/snow free parts of the δEM19–85 distribu-
tions for evergreen, deciduous, grassland, shrubland, and tundra repre-
sent relative fractions of about 3%, 6%, 11%, 8%, and 3%, respectively,
showing that deciduous and grassland cause the most ambiguity in
snow detection in the microwave. Therefore, we look for additional in-
formation that might help detect snow over these surfaces. The other
quantity obtained in the retrieval of the surface effective emissivities
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Fig. 8. Normalized histograms of anomaly effective emissivity of 19V–85V channels for 5 different vegetation types separated for snow and snow free surface using snow cover maps.
(The y-axis was cut at 8% for a better visualization but their percentages are shown of the graph.)
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is the corresponding skin temperature (TS): since we are using only the
clear scenes, this value comes from collocated and coincident IR radi-
ance retrievals from the ISCCP data product. In Fig. 1 for the same
month of December, mean TS varies between −40 and +20. In Fig. 9
the skin temperatures are plotted vs. EM19V, EM85V, EM19–85 and
δEM19–85 for the month of December. The first use of this figure is to
check whether the effective emissivities are correlated with tempera-
ture, that would indicate some residual dependence or whether the
skin temperature data can be used as extra information together with
the effective emissivities to detect snow. The scatter plot for EM19V
shows that it is not simply proportional to skin temperature, as would
be the case if we did not remove all of the physical temperature varia-
tions from the brightness temperature variations. This argues that we
have removed the physical temperature dependence. However,
EM85V does exhibit a relationship with TS but such a relationship
would be expected to be caused by the temperature dependence of
snow properties. The scatterplots of the EM19–85 and δEM19–85 both
show a generally negative relation with skin temperature consistent
with the idea that as temperature increases, the effective emissivity dif-
ference or its anomaly decreases towards snow-free values, implying
that TS might be useful for separating snow-covered and snow-free
locations.

To explore this possibility, we show in Fig. 10a and b the scatter plots
for deciduous and grassland for 1 day (as an example) of the values of
δEM19–85 vs. TS, where the color-coding indicates how the operational
NOAA product labels each location. As can be seen there are some
locations with δEM19–85 b 0.05 and TS b 0 °C that are labeled as both
snow-covered and snow free but this is also true for TS N 0 °C; likewise
for δEM19–85 N 0.05 there are both snow-covered and snow-free
locations both above and below TS = 0 °C. The figure shows one day
of the data for clarity but Table 2 shows the statistics for daily data
over all 12-winter seasons, showing the percentage of the snow-
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Fig. 9. Scatter plots of single frequency channels, difference frequency, and anomaly frequency difference of effective emissivity versus skin temperature where the color bar shows the
percentage of distribution of the point. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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covered and snow-free pixels according to the NOAA product for each
combination of δEM above and below 0.05 and TS above and below
0 °C for the 5 vegetation types. As already shown, almost all locations
with δEM19–85 ≥ 0.05 are labeled as snow-covered and almost all
locations with δEM19–85 b 0.05 and TS N 0 °C are labeled as snow
free. The key result is that almost all locations with δEM19–85 b 0.05
but TS b 0 °C are also labeled as snow-covered. The worst disagreement
according to the NOAA product is for deciduous forests, but this case is
also difficult for a mostly-visible-image-based analysis.

Thus, wemodify our snow detection procedure as defined by Eq. (2).

If δEM19−85 ≥ 0:05 ¼ N Snow
If δEM19−85 b 0:05 & TS b0 ¼ N Snow
If δEM19−85 b 0:05 & TS ≥0 ¼ N No snow:

ð2Þ

Eq. (2) is applied to the data and the results compared with the
operational NOAA snow cover product. Fig. 10c and d illustrates these
new results for one day over grassland and deciduous; Table 2 contains
the statistics for all 12 years. The colors now indicate the following:
cyan means both datasets agree that the location is snow-covered and
red means both datasets agree that the location is snow-free. There
are four classes of disagreement: class 1a (yellow) are locations with
δEM19–85 N 0.05 and TS N 0 that we call snow-covered that are called
snow-free by the NOAA product, class 1b (black) are locations with
δEM19–85 N 0.05 and TS b 0 that we call snow-covered that are called
snow-free by the NOAA product, class 2 (magenta) are locations
where δEM19–85 b 0.05 and TS b 0 °C that we call snow-covered but
the NOAA product labels as snow-free, and class 3 (green) are locations
where δEM19–85 b 0.05 and TS N 0 °C that we call snow-free but the
NOAA product labels as snow-covered. About 50% to 90% of the pixels
for each of the vegetation types in winter have δEM19–85 above 0.05
where shrubland is the lowest (47%) and tundra is the largest (94%)
and the combination of all vegetation is 63%. Around 5% to 30% have
δEM19–85 below 0.05 and TS below zero and around 10% to 45% have
δEM19–85 below 0.05 and TS above zero. The disagreement frequency
for the combination of all vegetation types are 1% for class 1a and 1b,
3% for class 2, and 1.6% for class 3 (Table 2).

4. Evaluation of the snow detection

As discussed in the previous section and shown in Table 2 there is
agreement for about 90% of all locations between the proposed algo-
rithm and theNOAAproduct and about 10%disagreement. For snowde-
tection, deciduous is the most problematic vegetation type and for the
snow-free detection, shrubland is the most problematic one. Therefore,
although the effect of vegetation was removed from the effective emis-
sivity it can still disturb the signal. The uncertainty in the ISCCP tem-
peratures at high latitudes is about ±2–3 K under clear wintertime
conditions (Moncet, Liang, Lipton, Galantowicz, & Prigent, 2011;
Prigent et al., 2003b), sowefirst test the sensitivity of the disagreements
by changing the skin temperature threshold to +2 °C or−2 °C instead
of zero. If the threshold is+2 °C instead of 0 °C, the snow-detection dis-
agreement (class 2) for all vegetation increases by 3% and the snow-free
detection disagreement (class 3) decreases by 1%. If the threshold is
changed to −2 °C the snow-detection disagreement (class 2) for all
vegetation decreases by 3% and the snow-free detection disagreement
(class 3) increases by 1%. Therefore, there is about 6% change in the dis-
agreement percentages for the snow-detection and 2% for snow-free
detection when the temperature threshold is changed. In other words,
about half of the disagreements could be due to the TS errors.
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Fig. 10. Scatterplots of anomaly effective emissivity of 19V–85V vs. skin temperature for 2 different vegetation types. Top) snow (cyan) and snow free (red) separated using NOAA snow
flags. Bottom) Snow(cyan) and no snow (red) separatedusing theproposed algorithmwhere classes 1a, 1b, 2, and 3 are the disagreementwithNOAA snowflags. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
The percentage of each of the vegetation type in the whole dataset. Second column is the
percentage of each of the classes for each of the vegetation types. The next four columns
show the percentage of each of the disagreement classes that are associated with each
of the situations.

Vegetation Class Melt/ Precipitation Ice Un-clarified
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The behavior of the 10% of cases that disagree was studied individu-
ally for each of the four classes described in Section 3. To aid in the study
of these pixels, we bring in precipitation information from GPCP. Three
situations were found that explained most of the disagreement in the
four classes: a) rapid melt/freeze events, b) precipitation, and c) ice
cover labeled as snow. These three types of situation explain about
90% of the disagreements, that is 9% of the 10%. The pixels which did
not fall into any of these situations (about 1%) are called “un-explained”.
We illustrate each of these situations and showwhat percentage of each
class can be explained by these situations.

Table 3 shows the percentages for 12 years for each of the four dis-
agreement classes and four situations. In the first column, the table
shows the percentage of each of the vegetation type in the whole
dataset. The second column shows the percentage of each of the classes
Table 2
Percentages of δEM19–85a for different vegetation types showing how much data falls
above .05, below .05 and below TS 0, and below 0.05 and above TS 0.

Vegetation Flag δEM19–85
N 0.05

δEM19–85
b 0.05
TS b 0

δEM19–85
b 0.05
TS N 0

Evergreen Snow 78.35% 9.08% 0.81%
No snow 0.82% 0.66% 10.29%

Deciduous Snow 53.79% 17.37% 0.31%
No snow 2.15% 8.04% 18.33%

Grassland Snow 45.91% 30.75% 2.72%
No snow 1.08% 3.72% 15.81%

Tundra Snow 93.37% 5.67% 0.09%
No snow 0.52% 0.14% 0.21%

Shrubland Snow 24.25% 25.62% 5.48%
No snow 0.84% 4.43% 39.39%

All vegetation Snow 61.99% 17.27% 1.67%
No snow 1.07% 3.04% 14.95%
(1a, 1b, 2, 3) for each of the vegetation types. The next four columns
show the percentage of each of the disagreement classes that are asso-
ciated with each of the situations (melt/freeze, precipitation, ice, un-
explained). For instance, evergreen is 25% of the total data, class 1a is
41% of that 25%, and melt/freeze is 52%, precipitation is 15%, ice is 28%,
and un-explained is 5% of that 41%. This means that the disagreements
in class 1a for evergreen as a percentage of the total dataset are
freeze

Evergreen
25%

1a (41%) 66 29 0 5
1b (02%) 46 20 28 6
2 (44%) 48 14 34 4
3 (13%) 59 33 0 8

Deciduous
27%

1a (34%) 65 33 0 2
1b (01%) 25 2 67 6
2 (65%) 30 11 55 4
3 (01%) 96 0 0 4

Grassland
24%

1a (20%) 64 25 0 11
1b (01%) 30 22 38 10
2 (58%) 59 5 24 12
3 (21%) 67 28 0 5

Shrubland
15%

1a (10%) 83 10 0 7
1b (01%) 66 9 13 12
2 (46%) 74 12 4 10
3 (43%) 63 26 0 11

Tundra
9%

1a (0%) 0 0 0 0
1b (42%) 74 0 23 3
2 (58%) 12 0 88 0
3 (0%) 0 0 0 0
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Table 4
Comparison of the anomaly effective emissivity snow test with IMS, CMC, and MODIS,
NISE.

Flag δEM19–85
N 0.05

δEM1985
b 0.05
TS b 0

δEM1985
b 0.05
TS N 0

(IMS) Snow 51.49 14.67 4.26
No snow 4.78 08.93 15.84

CMC Snow 51.60 22.34 5.77
No snow 4.05 04.99 11.22

MODIS Snow 48.07 10.09 1.92
No snow 0.52 05.90 33.47

NISE Snow 32.76 03.93 3.10
No snow 06.07 12.24 41.8
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5.3%, 3.2%, 2.2%, and 0.2% for melt/freeze, precipitation, ice, and un-
explained, respectively.

The melt/freeze situation accounts for the largest percentage of all
the four disagreement classes and all vegetation types. We examine
the day-to-day variations of IR skin temperature of the pixels in each
class centered on the day of disagreement. A melt event happens
when TS of a pixel is below zero on one day and is suddenly above
zero on the next day and a freeze event happens when TS of a pixel is
above zero on one day and is suddenly below zero on the next day.
This causes the snow to melt (melting does not have to be complete)
or surface water to freeze suddenly; therefore the surface dielectric
constant on day one will be different from that on the next day.
Since the dielectric properties of liquid and frozen water at microwave
frequencies are very different, the change of phase produces a substan-
tial variation on surface effective emissivity. Therefore, even though the
temporally sparse visible observations label these pixels as snow-
covered or snow-free over these few-day intervals (remember that a
visible-image-based snow detection obtains results only under clear
conditions, which limits the time sampling to a scale of a few days),
the microwave observations sense the changes (melt or freeze). More
than 50% of each disagreement class is explained by rapid melt/freeze
events; shrubland has the highest and tundra the lowest percentage in
this situation.

The situation with the next largest percentage after melt/freeze is
precipitation. We used the GPCP daily precipitation data to check if
there was a precipitation event at those pixels on the specific days of
disagreement. Between 5% and 30% of the pixels in each of the classes
can be explained by contamination by rainfall or snowfall events. The
microwave effective emissivities used in this study are obtained under
the clear sky conditions as indicated by the coincident ISCCP cloud prod-
uct. However, each 0.25-degree map grid cell contains only a one-pixel
sample from ISCCP; this sample is a single pixel about 5 km across, so
the ISCCP dataset only samples about 4% of the 0.25-degree area. Thus,
it is possible on rare occasions that the low areal coverage by ISCCP
and the low spatial and temporal resolution of GPCP (1°, daily) can
allow for some instances of coincident clear conditions and precipita-
tion. The GPCP data does not say if the precipitation is in form of rain
or snow. If the temperature of that pixel is above about−5 °C the pre-
cipitation (about 2/3 of the precipitation error falls into this category) is
most likely in the form of rain andwhichwill change the surface dielec-
tric constant, causing an error in the snow detection. If the temperature
of that pixel is below about−5 °C the precipitation is most likely in the
form of snow (about 1/3 of the precipitation error falls into this catego-
ry) so the sensitivity of the higher frequencymicrowave to falling snow
(Skofronick-Jackson, Kim, Weinman, & Chang, 2004) can produce an
error in the snow detection. Evergreen and grassland have the largest
percentages of this situation (about one fifth to one third of the dis-
agreements) but this situation does not occur over tundra.

Another situation is when δEM19-85 b 0.05 and TS is very cold,
below −20 °C. These pixels are called snow-covered according to
Eq. (2). The NOAA snow cover product labels some of these pixels ice-
covered and some of them as snow-free. Including the ice cover part
of the NOAA dataset accounts for more than 50% of the pixels with
very cold TS. The ice product labels Greenland (and Antarctica) as per-
manent icewhere there could be snow on the ice. However, as the sum-
mertimemean EM difference, is actually representative of ice cover, the
values of δEM19–85 do not indicate snow-cover. Tundra has the largest
percentages in this situation.

The un-explained situation is where none of the above explanations
applies. This situation occurs about 5% to 12% for each disagreement
class with Shrubland and Grassland having the highest percentages
(equalized to 1% of the total dataset). Some of these cases can be
explained by the mismatch of temporal and spatial resolutions as
discussed in Section 2, where it was shown that about 2–4% of the
disagreements can be explained by these mismatches and TS errors
(Moncet et al., 2011)
Of the 10% of cases where there was apparent disagreement about
the presence or absence of snow, the rapidmelt/freeze events explained
the largest percentage (more than half) of these and the un-explained
situations accounted for less than 10% (1% of the total data). Deciduous
and grassland have the largest disagreement for snowdetection (classes
1a, 1b, and 2) and shrubland has the largest disagreement for snow-free
detection (class 3), mostly due to rapid melt/freeze events. Class 1b
(where δEM19–85 N 0.05 and TS b 0) has a very small percentage
(less than 1% of the total data) compared to the other classes and can
be neglected. There are number of studies on melt/freeze of snow dur-
ing melting seasons using visible, passive and active microwave data
(Foster et al., 2011; Royer, Goita, Kohn, & De Seve, 2010). There is
about 90% agreement between the snow detection algorithm (Eq. 2)
and the NOAA product. To confirm this agreement, our snow detection
results are next compared with other available snow cover datasets.

5. Comparisons

The results of our snow detection procedure were compared with
three different datasets: the daily NOAA IMS snow cover (a mixed visi-
ble andmicrowave based product), the CanadianMeteorological Center
(CMC) snow depth (a completely satellite-independent product),
MODIS snow cover (a visible-NIR based product), and another micro-
wave product near-real time ice and snow extent (NISE) (a microwave
brightness temperature product). The accuracy of these maps is not
known either but the techniques used tomap snow cover in the various
maps are very different. Each of these snow cover maps was also com-
pared to each other.

5.1. IMS

The IMS product is manually created by a satellite analyst looking at
all available satellite imagery, several automated snow mapping algo-
rithms, and other ancillary data. For snow extent, they rely primarily
on visible band satellite imagery. The analyst begins with a previous
day's map as a first guess and changes it only if there is data available
for that day. Thus the effective time resolution is a few to many days.
We compared the daily IMS snow product with our snow detection al-
gorithm snow product for five available matching years (2000–2004).
As it is shown in Table 4 about 51% of the snow data are above the
anomaly 0.05 and 15% is below 0.05 with skin temperature below
zero, which says 66% of the data agree for snow and about 16% below
anomaly 0.05 with skin temperature above zero says the data agree
for no snow. There is about 17% disagreement, where some of it can
be explained by the filling of the data with the pervious available
observation.

5.2. CMC

Snow depth data from CMC were compared with our results show-
ing about 74% snow agreement, 11% no-snow agreement, and 14%



Table 5
Comparison of MODIS snow fraction in 25 km resolution with the snow detection algo-
rithm for 5 years (2000–2004). Column 1 shows MODIS snow coverage, column 2 shows
the percentage of the pixels that fall in that category for thewhole globe and thewhole 5 -

years, and column 4 shows the percentage of the pixels that agree/disagree with MODIS
using our snow detection algorithm.

MODIS snow
fraction

Pixel
percentage

Snow detection
algorithm

0% 59.04 Snow 15.14
No snow 84.92

1–25% 3.56 Snow 59.66
No snow 40.34

25–50% 2.37 Snow 74.76
No snow 25.24

50–75% 2.48 Snow 79.33
No snow 20.67

75–99% 2.99 Snow 81.76
No snow 18.24

100% 29.55 Snow 98.77
No snow 1.23
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disagreement. The disagreement may be increased by the fact that the
CMC data are station (point) data, whereas the satellite data has a
25 km footprint (Table 4). The IMS and the CMC are in good agreement
with each other at about 91%.

5.3. MODIS

The MODIS snow product has a lot of missing data on a given date
because pixels during night and cloudy sky conditions have no snow
report. More than 50% of the MODIS data in the northern hemisphere
during the snow season fall into the night and/or cloudy category each
day, where snow detection is not possible. Only the available pixels
with each other at each day for 5 years (2000–2004) were compared
in such a way that all the 500 m pixels of MODIS were averaged in a
25 km pixel (matched with the passive microwave) and if the snow
percentage was more zero the pixel was called snow. This comparison
showed 58% of the snow agrees, 33.47% of the no snow agrees, and 8%
disagreed (Table 4). Someof the disagreements can be due to the spatial
Fig. 11. Time series of amount of snow cover with snow detection algorithm, NOAA snow
values (a & b).
resolution differences. Since MODIS has much higher resolution than
the microwave and it reports snow cover percentage for each pixel, an-
other comparison was done in order to check that when the MODIS
snow coverage is less 100% what would the snow detection algorithm
call the pixel. Looking at the 500 m resolution MODIS pixels it was
found that only 6% of the snow-covered pixels have values between 1
and99%andwhen the500mMODISpixels are averaged to 25 km pixels
this percentage only increases to 11%. When the MODIS snow coverage
is 100% the snow agreementwith our snow algorithm is 98%, and as the
snow coverage decreases the agreement decays down to 60% for snow
coverage below 25% (Table 5). From these statistics it can be said that
first, averaging the 500 pixels to 25 km only increases the partial
snow coverage by 5%. Second, the pixels with less than 25% snow
coverage are the largest group, which are still very rare situations.
Third, of this 11% of the pixels with partial snow coverage our snow
algorithmdetects snowpixels between 60 and 80%of the time. Compar-
ing theMODIS snow cover with the CMC and IMS data using only avail-
able pixels of theMODIS, there is about 36% of snow agreement and 53%
of no snow agreement. The remaining 10%, which disagrees, again can
be due, in part, to the different spatial resolutions of the datasets.

5.4. NISE

The NISE data were compared with our results showing about 36%
snow agreement and 42% no-snow agreement. There is 18% disagree-
ment with the snow detection where 12% of it falls into the condition
of δEM19–85 b 0.05 and TS b 0 which will be called snow with our de-
tection but are called no-snow with the NISE products. Most of the dis-
agreement is with the TS in the detection and about half of this 12% is
due to themelt/freeze transition. This data is derived from SSM/I micro-
wave using an algorithm (Armstrong & Brodzik, 2001) that uses the
brightness temperature difference of two channels (19H–37H). Their
study demonstrates that their algorithm underestimates snow extent
in the presence of shallow snow; however it tends to overestimate
snow extent (both wet and dry) in various locations (Nolin et al.,
1998). Since we are using 85 GHz in our algorithm, which can see shal-
low snow better. Comparing NISE and MODIS there is 83% agreement
cover product, TS, and δEM19–85. The snow covers are normalized to the maximum
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between them. MODIS is the visible-infrared based snow product that
agreed best (92%) with our snow algorithm, which shows we have a
more sensitive microwave-based algorithm than NISE.
6. Interannual Variability of snow-cover

One motivation for producing an accurate snow detection dataset,
besides using it to study snowpack properties and behavior, is to be
able to study the slow interannual variations of snow cover that are
not only indicators of climate change but also an important positive
feedback on global warming as reduced snow cover leads to increased
solar heating. To understand the atmospheric and surface processes in-
volved requires resolving the time variations at scales commensurate
with weather events. Such studies will have to extend the daily (or
even twice-daily) microwave snow cover detection to retrievals of the
physical properties of the snow and combine these results with other
data products quantifyingweather events. Here, we look at the time se-
ries of the amount of the snow over the Northern Hemisphere for the
12-year record (1993–2004) produced byour snowdetection algorithm
to obtain a preliminary idea of the magnitude of interannual variability
(Fig. 11a).

The time series in Fig. 11a shows the number of snow-covered pixels
for each day divided by all the pixels for the five vegetation types in the
Northern Hemisphere, normalized by themaximumvalue in the record.
There are no changes from 1993 until the winter of 2001–2002 when
there is a 10% decrease in the maximum snow cover extent as well as
an increase in the summer 2002 minimum extent. Over the next few
years, the maximum extent slowly increases towards its prior values
but the summertime minimum extent remains the same. Fig. 11b
shows the snow cover extent from the NOAA operational product,
which exhibits the same decrease in themaximum extent in the winter
of 2001–2002 and the same increase in the 2002 summertime mini-
mum extent. Although the NOAA product shows the increase in the
wintertimemaximumextent in subsequent years, it also shows a signif-
icant increase in theminimum extent. These changes in snow cover ex-
tent may be consistent with the generally warmer average wintertime
temperatures in 2001–2002 and the cooler 2002 summertime temper-
atures shown in Fig. 11c. In the following years, both thewintertime and
summertime temperatures change back towards their previous values.
Fig. 12. Time series of percentage of snow cover over land with snow detection algor
Fig. 11d shows the average values of δEM19–85; the variations are con-
sistent with a decrease of snow extent as they should be.

The timing of this apparent change in snow cover and temperatures
is unfortunate, since there is a known increase of the ISCCP global
monthly mean TS values by a little less than 3 K between September
and October 2001 that is produced by a change in the atmospheric tem-
perature–humidity product (TIROSOperational Vertical Sounder, TOVS)
used by ISCCP to retrieve surface skin temperatures (Zhang et al., 2004).
Since the effect on surface temperature depends on the changed at-
mospheric absorption of infrared emission from the surface as well as
atmospheric emission, both of which depend on the water vapor abun-
dance, the magnitude of the change in high latitude wintertime TS
values is weaker than the global mean change. To investigate whether
this affects our results, we first examinedmaps of monthly temperature
differences (we are looking for a bias) between September and October
in 2000, 2001 and 2002. We find differences in TS b 5 K in lower lati-
tudes but much smaller changes at higher latitudes: the decrease of TS
from September to October (difference of monthly averages over the
area for the five vegetation types) is about 8 K in 2000 and 7 K in
2002, when there is no systematic change of the TOVS product between
months. However, in 2001, this change is only a little over 5 K, suggest-
ing that the TOVS change may have reduced the seasonal decline of TS
by up to 3 K — the change of TS in wintertime will be smaller still.

A spurious change in TS can affect our snow detection in two ways.
First, since we use a TS test as part of the detection algorithm, any
shift of TS could induce a bias of snow cover. The threshold sensitivity
test we described earlier in Section 4 shows that snow extent would
change by only about 2–3% for a 2 K change in TS. However, Fig. 12
shows the fraction of the total snow cover detected by the effective
emissivity-only and the temperature thresholds (Eq. 2), demonstrating
not only that most of the snow detected by the temperature-
independent threshold on δEM19–85 but also that all of the decrease
in snow cover extent comes from the effective emissivity part of the
algorithm. So the TS change from ISCCP is not large enough to explain
the 10% decrease in snow cover extent. The second way that TS can af-
fect our results is in the retrieval of themicrowave effective emissivities.
However, the decrease in δEM19–85 comes entirely from theEM85 (not
shown). The fact that EM85 changes, but EM19 does not, is inconsistent
with a temperature-induced error in themicrowave retrieval which re-
quires the same physical temperature for all microwave channels. Thus,
ithm, for total snow, snow detected by effective emissivity, snow detected by TS.
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Fig. 13. Time series of the amount of the snow cover for the snow detection algorithm for the 12-year record (1993–2004), NISE for 9-year (1996–2004), and MODIS for 5-year
(2000–2004).
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if a change in EM is to be associated with a change in TS, all channels
should exhibit similar changes. Any residual effect of the biased TS
value input to the retrieval from ISCCP is further mitigated by using
EM differences in our detection algorithm. Thus, we conclude that the
sudden change of the ISCCP TS values between September and October
2001 cannot explain the decreased snow cover extent that we obtain in
the following winter of 2001–2002 relative to previous winters. More-
over, the interannual evolution of the ISCCP TS values after 2001
shows no significant trends to explain the subsequent slow increase of
wintertime snow cover extent. We also note that the baseline NOAA
operational snow cover product shows the same decrease in snow
cover but by about 12% (Fig. 11b), the MODIS snow cover product
shows a similar decrease but by about 7%, and the NISE data shows
about 4% decrease (Fig. 13). The other two snow products, IMS and
CMC, do not exhibit any changes (not shown). More investigation of
the possible variations of snow cover extent is warranted to verify this
result.

7. Conclusions

Passive microwave has advantages over other satellite measure-
ments for snow detection because it provides results day and night
and under most weather conditions. The effective emissivity product
used in this analysis has the advantage of having the contributions of
the atmosphere, including clouds and water vapor, removed and the
physical temperature variations separated from the effective emissivity
variations. Although this particular dataset is produced under clear sky
(cloudy pixels are removed) which provides more sensitivity to ground
effects, it shouldworkwhen there is cloud if it is not precipitating (Aires
et al., 2001).

By employing a difference of effective emissivities at low and high
frequencies and determining the time-anomaly of this difference for
each location, we also removed the constant effects of land surface veg-
etation properties, leaving only the snow signal (for deep snow layers,
this proceduremay underestimate the snow signal). As a test of the iso-
lation of snow signature from themicrowave signal we evaluated an al-
gorithm to detect snow with that signal. Our snow detection results
agreed about 78% with another microwave snow detection (NISE) and
more than 80% of the time, with three other snow datasets (IMS,
MODIS, CMC) because the IMS and MODIS depend on visible, and
CMC is independent of satellite measurements.

Most of the 10% disagreements between theproposed algorithmand
NOAA snow cover product can be explained by rapid melt–freeze–
refreeze events, contamination by coincident precipitation mislabeled
frozen ground, and spatial/temporal mismatches. The remaining un-
explained cases represent only about 1% of the dataset. These disagree-
ments point to the need for a high time resolution product that is not
limited by cloud cover or solar illumination, especially to detect the
rapid melt/freeze events. Also, if precipitation effects were accounted
for then such a product would capture changes in the surface following
snowfall (or rainfall) events. The cases of bare ice cover or snow cover
on permanent ice require more careful study to determine whether
the microwave can detect the changes.

A snow cover time series (12-year) was examined. The interan-
nual variability of the snow characteristics appears to be very small
but there appear to have been notable changes in the early part of
this decade, a result also found in two other snow cover products.
The artifact in the ISCCP TS values may have exaggerated the magni-
tude of this change in our results but cannot explain the whole
change that we find.

Our algorithm which produced a more sensitive microwave detec-
tion of snow has also isolated the snow part of the signal (approximate-
ly) which can now be used to characterize the physical snowpack
properties such as snow depth, snow density, snow grain size, and
snow water equivalent. These products; 1) the snow cover product,
daily snow-cover variability which shows the increase/decrease of
snow cover for each day, 2) an anomaly effective emissivity difference
that indicates changes in snowproperties each day, and 3) the skin tem-
perature associatedwith each of these pixels can all be used as inputs to
future snowpack retrievals.
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