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Abstract. This study presents an evaluation and comparison of visible, near- 
infrared, passive and active microwave observations for vegetation characterization, 
on a global basis, for a year, with spatial resolution compatible with climatological 
studies. Visible and near-infrared observations along with the Normalized Difference 
Vegetation Index come from the Advanced Very High Resolution Radiometer. An 
atlas of monthly mean microwave land surface ernissivities from 19 to 85 GHz has 
been calculated from the Special Sensor Microwave / Imager for a year, suppressing 
the atmospheric problems encountered with the use of simple channel combinations. 
The active microwave measurements are provided by the ERS-1 scatterometer at 
5.25 GHz. The capacity to discriminate between vegetation types and to detect 
the vegetation phenology is assessed in the context of a vegetation classification 
obtained from in situ observations. A clustering technique derived from the Kohonen 
topological maps is used to merge the three data sets and interpret their relative 
variations. NDVI varies with vegetation density but is not very sensitive in semi- 
arid environments and in forested areas. Spurious seasonal cycles and large spatial 
variability in several areas suggest that atmospheric contamination and/or solar 
zenith angle drift still affect the NDVI. Passive and active microwave observations 
are sensitive to overall vegetation structure: they respond to absorption, emission, 
and scattering by vegetation elements, including woody parts. Backscattering 
coefficients from ERS-1 are not sensitive to atmospheric variations and exhibit 
good potential for vegetation discrimination with •10 dB dynamic range between 
rain forest to arid grassland. Passive microwave measurements also show some 
ability to characterize vegetation but are less sensitive than active measurements. 
However, passive observations show sensitivity to the underlying surface wetness 
that enables detection of wetlands even in densely vegetated areas. Merging the 
data sets using clustering techniques capitalizes on the complementary strengths 
of the instruments for vegetation discrimination and shows promising potential for 
land cover characterization on a global basis. 

1. Introduction 

Physical characteristics of land cover are one family of 
crucial boundary conditions for climate models because 
they can strongly influence the exchanges of energy, 
water, and carbon between the biosphere and the at- 
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mosphere. Land surface parameterizations for General 
Circulation Models have traditionally relied on global 
fields of terrestrial biophysical parameters estimated 
from land cover data sets derived from in situ surveys 
[Matthews, 1983] or from vegetation indices calculated 
from satellite data in the visible and near-infrared [Sell- 
ers et al., 1994, 1996]. The Normalized Difference Vege- 
tation Index (NDVI), calculated from the red and near- 
infrared channels of the Advanced Very High Resolution 
Radiometer (AVHRR), has been extensively used for 
vegetation studies. The availability of the NDVI data 
for two decades and its high horizontal spatial resolution 
(up to 1 km) have motivated a large number of studies 
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from regional to global scales [e.g., Tucker e! al., 1985; 
Myneni el al., 1998; DeFries el al., 1999], relating NDVI 
to vegetation physiology and structure. However, there 
are growing concerns about the ability of the NDVI to 
quantitatively represent the vegetation properties, and 
NDVI sensitivity to atmospheric contamination and in- 
strument calibration is debated [Gutman, 1999]. 

Lower-resolution space-borne sensors operating in the 
microwave part of the spectrum have also shown some 
ability to characterize the land surface at spatial resolu- 
tions compatible with climatological applications. For 
global vegetation characterization, these instruments 
have, to date, triggered less interest than their visible 
and near-infrared counterparts. 

Passive microwave observations from the Scanning 
Multichannel Microwave Radiometer on board Nimbus 

7 starting in 1978 and from the Special Sensor Mi- 
crowave/ Imager (SSM/I) on board Defense Meteoro- 
logical Satellite Program (DMSP) satellites since 1987 
have been used in vegetation studies, especially in con- 
junction with NDVI responses. Most studies have fo- 
cused on the use of simple indices like the microwave 
vegetation index which is based on the polarization dif- 
ference at 37 GHz [e.g., Choudhury and Tucker, 1987; 
Justice et al., 1989]. However, as noted by several 
authors [Tucker, 1989; Kerr and Njoku, 1993], atmo- 
spheric effects, especially cloud cover, is responsible for 
a large part of the 37 G Hz polarization difference, cast- 
ing doubt on the interpretation of simple indices solely 
in terms of surface properties. Recently, Prigent et al. 
[1997, 1998] calculated land surface microwave emissivi- 
ties from SSM/I observations by removing contributions 
from the atmosphere, clouds, and rain using ancillary 
satellite data. These global results show promising cor- 

, 

respondences between geographical and seasonal pat- 
terns of emissivities and land surface characteristics. 

Multiyear active microwave data over the entire globe 
are a relatively new resource available since July 1991 
with the launch of the European Remote Sensing (ERS) 
satellite ERS-1 carrying a wind scatterometer operating 
at 5.25 GHz (C band). Scatterometers provide measure- 
ments of the backscattering coefficient of observed sur- 
faces. Although primarily designed for estimating wind 
speed and direction over the ocean, space-borne scat- 
terometers have shown good correlation with vegetation 
dynamics at global and regional scales. Preliminary re- 
sults were obtained using 3 months of scatterometer 
data obtained from Seasat-A in 1978 [Kennett and Li, 
1989] and were later confirmed by several authors using 
ERS-1 and ERS-2 data [Kerr and Magnani, 1993; Wis- 
mann el al., 1993; Frison and Mougin, 1996a, b; Wag- 
ner el al., 1999a]. Other studies [e.g., Wagner el al., 
1999b] have also shown that the backscattering coeffi- 
cients measured by ERS-1 are sensitive to soil moisture. 

The objective of this study is to compare individu- 
ally and together the ability of these measurements to 
characterize the spatial distribution of the vegetation 
and its phenology and to examine how complementary 
strengths of these instruments can be used to obtain 
maximum information about vegetation physical char- 
acteristics on a global basis. The three types of ob- 

servations analyzed here cover a large portion of the 
electromagnetic spectrum: (1) AVHRR visible (0.58- 
0.68 /•m) and near-infrared (0.73-1.1 /•m) reflectances 
and the derived NDVI, (2) passive microwave SSM/I 
emissivities between 19 and 85 GHz (i.e., from 1.58 
to 0.35 cm in wavelength), and (3) ERS-1 active in- 
strument backscattering coefficient at 5.25 G Hz (wave- 
length = 5.71 cm). Our analysis of SSM/I also uses 
observations in the visible and infrared (~ 11 /•m) to 
identify cloud-free scenes and measure surface skin tem- 
peratures. However, in this study we do not consider 
the possible information about land-surface properties 
that may be obtained from temperature data. 

A year of monthly mean or monthly composite ob- 
servations of each instrument is examined, at a spatial 
resolution of 0.250 x 0.250 at the equator. This spatial 
resolution was chosen to be appropriate for global cli- 
mate studies. The three data sets are described in sec- 

tion 2. Section 3 briefly reviews the responses of each 
wavelength range to the land surface characteristics, as 
background in interpreting the monthly distribution of 
the data sets. The ability of each instrument to dis- 
criminate among vegetation types and to capture the 
seasonal cycle is analyzed on a global basis (section 4). 
The vegetation classification [Matthews, 1983] is used 
as a reference. A clustering technique derived from Ko- 
honen [1984] topological maps is implemented to merge 
the three data sets and enable a synthetic analysis of the 
respective variations of the spectral bands (section 5). 
Section 6 concludes this study and suggests potential 
applications of the clustering technique for land cover 
classification. 

2. Data Sets 

This study evaluates the potential of globally and 
routinely available satellite data for their potential for 
vegetation characterization with a spatial resolution 
compatible with climatological studies. A full annual 
cycle of the data sets from three satellites (July 1992 to 
June 1993) is analyzed. All the data sets are mapped 
on an equal-area grid of 0.25øx0.25 ø resolution at the 
equator and monthly mean or monthly composite values 
are calc,ulated from daily values. 

High-resolution data from visible and near-infrared 
(e.g., Landsat and Spot) or from synthetic aperture 
radar (SAR) have been used for local studies. How- 
ever, because of large data volumes associated with 
these observations as well as their incomplete coverage 
on a global and continuous basis, lower resolution in- 
struments are preferred for global studies. 

The three satellite data sets are described in this sec- 

tion along with the Matthews [1983] vegetation classifi- 
cation. The latter has been widely used and provides 
a reference for testing the ability of remote sensing in- 
struments to distinguish among vegetation types. 

2.1. Visible and Near-Infrared Reflectances 
and NDVI From AVHRR 

The AVHRR instruments on board the National Oce- 

anic and Atmospheric Administration (NOAA) meteo- 
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rological polar orbiters provide daily observations of the 
Earth with a spatial resolution as high as I km. The 
first AVHRR channel is in the visible (VIS 0.58-0.68 
/•m) where chlorophyll causes absorption of incoming 
radiation, and the second channel is in the near-infrared 
(NIR 0.73-1.1/•m). NDVI is calculated as the ratio of 
the difference of the AVHRR channels 2 and I over their 

Several AVHRR global data sets have been produced. 
Monthly composite AVHRR products at 8 km resolu- 
tion are generated under the joint NASA and NOAA 
Earth Observing System Pathfinder project [James and 
Kalluri, 1994]. They are available at NASA Goddard 
Space Flight Center Distributed Active Archived Cen- 
ter (Web site http://gsfc.nasa.gov), a. long with a de- 
scription of the data calibration and processing. Cor- 
rections for Rayleigh scattering and ozone absorption 
are performed, but there is no atmospheric correction 
for water vapor and aerosols. However, NDVI com- 
posite maps correspond to the maximum value of the 
NDVI for the compositing time period, which tends to 
minimize atmospheric contamination [Holben, 1986]. A 
cloud screening procedure is performed. Solar zenith 
angle dependences are related to both annual solar cy- 
cle and changes in equatorial crossing time. They are 
not accounted for in the reflectances and can introduce a 

spurious seasonal variation in the NDVI signal that may 
be falsely attributed to vegetation changes [Gulman, 
1999]. Gulman [1999] describes the data set in detail 
and analyzes its quality. He reviews instrument perfor- 
mance and satellite orbit characteristics. For NOAA 11, 
which covers the period of this study, anomalies in chan- 
nel 1 and :2 reflectances should be no more than 4-1% 

and 4-2%, respectively [Gutman, 1999]. Using a sim- 
ple error propagation equation, these errors translate 
into an accuracy of ,-• 0.1 in the NDVI for typical val- 
ues of the VIS and NIR reflectances. Several problems 
are mentioned (intersensor calibration, sensor degra- 
dation, satellite drift and changes in the solar zenith 
angle, contamination by clouds, water vapor, aerosols, 
and ozone) that hamper the interpretation of NDVI as 
a purely land surface signal. From radiative transfer 
calculations, Tanr( et al. [1992] carefully quantify the 
effect of atmospheric constituents on VIS and NIR re- 
flectances. Water vapor absorption essentially affects 
NIR reflectances, depressing it by 10-30% in sparsely 
vegetated areas. That translates into a decrease of up 
to 0.1 in the NDVI. Ozone can reduce the reflectance 

in channel 1 by 5-15% of its value. Aerosols can com- 
pletely mask vegetation properties with NDVI changes 
up to 0.2 in densely vegetated areas. Gulman [1999] 
draws attention to these NDVI problems stressing that 
NDVI investigations, especially those directed at long- 
term trends, currently encounter serious challenges. 

VIS and NIR reflectances and the NDVI monthly 
composite products are investigated in this study. Data 
are averaged from their 8 km Pathfinder nominal res- 
olution to an equal-area grid of 0.25 ø x 0.25 ø at the 
equator. 

2.2. Microwave Emissivities Between 19 and 

85 GHz (SSM/I) 

The SSM/I instruments on board the DMSP polar 
orbiters observe the Earth twice daily at 19.35, 22.235, 
37.0, and 85.5 GHz with both vertical and horizontal 
polarizations, with the exception of 22 GHz which is 
vertical polarization only [ttollinger el al., 1987]. The 
observing incident angle is close to 530 , and the ellip- 
tical fields of view decrease in size proportionally with 
frequency, from 43 x 69 to 13 x 15 km 2. ttollinger el 
al. [1990] provide an evaluation of the instruments, and 
intersensor calibration was examined by Collon and Poe 
[1999]. Pioneer investigations of the sensitivity of pas- 
sive microwave to vegetation used linear combinations 
of channels [e.g., Choudhury and Tucker, 1987]. How- 
ever, these simple indices have been shown to be con- 
taminated by variations in atmospheric parameters and 
surface temperature. Microwave emissivities of land 
surfaces were recently estimated from SSM/I observa- 
tions by removing contributions from the atmosphere, 
clouds, and rain using ancillary data from the Inter- 
national Satellite Cloud Climatology Project (ISCCP) 
[Rossow and $chiffer, 1991, 1999; Rossow el al., 1996] 
and the National Centers for Environmental Prediction 

(NCEP analyses) [Kalnay el al., 1996]. The method is 
fully described by Prigenl el al. [1997, 1998] and sum- 
marized here. Cloud-free SSM/I observations are first 
isolated using collocated visible/infrared satellite obser- 
vations (ISCCP data). The cloud-free atmospheric con- 
tribution is then calculated from an estimate of the local 

atmospheric temperature-humidity profile from NCEP 
reanalysis. The atmospheric contribution varies spa- 
tially and reaches 15% and 50% in the tropics for 19 
and 85 GHz, respectively. Finally, with the surface skin 
temperature derived from IR observations (ISCCP esti- 
mate), the surface emissivity is calculated for all seven 
SSM/I channels. The standard deviation of day-to-day 
variations of the emissivities retrieved over a month are 

typically 0.013 for all channels and for their polarization 
differences which is a measure of the precision of these 
estimates. Monthly mean values are calculated with a 
spatial resolution of 0.250 at the equator. 

2.3. Microwave Backscattering at 5.25 GHz 
(ERS-1 Scatterometer) 

The European Space Agency (ESA) ERS wind scat- 
terometer operates at 5.25 GHz vertical polarization 
with a 50 km spatial resolution. General character- 
istics and performance of the ERS scatterometer are 
given by Frison and Mougin [1996a]. The backscat- 
tering signal is continuously measured by three anten- 
nas, one looking normal to the satellite flight path and 
the other two pointing 450 forward and backward, re- 
spectively. The instrument scans a 500 km wide swath 
with viewing angles ranging from 180 to 59 ø. The ERS 
scatterometer shares some hardware with the synthetic 
aperture radar (SAR) and t-he SAR and the scatterome- 
ter modes are mutually exclusive. Therefore, over some 
areas where the SAR is typically on (North America 
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and Europe), the temporal sampling rate for the scat- 
terometer is low. With the scatterometer operating con- 
tinuously, global coverage would be achieved in about 
4 days. The scatterometer response is very stable over 
time for nonchanging targets, and the measurement un- 
certainty is estimated to be about 5%. Water vapor 
and cloud absorption/emission are negligible at 5.25 
GHz, and no atmospheric correction is required for the 
scatterometer signal. Frison and Mougin [1996a] show 
that the antenna intercalibration is very good, which 
enables the use of all three antennas. They also demon- 
strate that azimuth angle effects are small over veg- 
etated surfaces, although strong anisotropic signatures 
are observed over some deserts. For incidence angles be- 
tween 250 and 50 ø, scatterometer responses can be ap- 
proximated by a linear function of the incidence angle. 
Frison and Mougin [1996b] compared the scatterome- 
ter responses at various incidence angles and showed 
that the radar signal at low incidence angles (_<20 ø) 
is related to soil characteristics, whereas observations 
at large incidence angles (~45 ø) provide more informa- 

tion about vegetation. In addition, radar signals at low 
incidence angles exhibit a larger scatter and a smaller 
dynamic range over the course of a year. Other studies 
[e.g., Wagner e! al., 1999a] recommend fitting a model 
to the slope of the angular dependence at 400 , because 
this parameter is considered to be less sensitive to soil 
moisture. However, this parameter is very sensitive to 
noise, and several years of data are required to calcu- 
late it. Following the method developed by Frison and 
Mougin [1996a], for each cell on an equal-area grid of 
0.25øx0.25 ø at the equator, a linear fit is calculated for 
all incidence angles between 250 and 500 for a month 
and the fitted value at 450 is kept. 

2.4. Matthews' Vegetation Classification 

Matthews [1983] vegetation and land use data set was 
compiled from a large number of published sources. At 
a 10 spatial resolution the vegetation classification dis- 
tinguishes a large number of vegetation types, typically 
grouped to 30 classes of natural vegetation. Associ- 

Table 1. Matthews' Vegetation Classification a 

Vegetation Types Pixel Numbers 

31 10 Northern Southern Description 
classes classes Hemisphere Hemisphere 

1 1 5942 10,149 
2 3 3654 621 
3 1 0 231 

4 3 0 479 

5 3 780 134 

6 5 322 236 

7 3 618 0 

8 3 11,921 0 
9 2 1823 1647 

10 2 5559 95 

11 2 4598 0 

12 8 718 2624 
13 5 695 1408 

14 5 3227 0 

15 4 1767 3438 

16 4 3240 0 

17 8 1357 272 

18 8 817 41 

19 8 844 214 

20 8 601 0 

21 8 6258 5279 

22 7 9482 8 
23 6 3781 4587 

24 6 3168 1808 

25 6 8839 3374 

26 6 598 438 

27 6 560 436 

28 6 4872 2724 

29 6 359 0 

30 9 18,187 1934 
31 10 24,965 2896 

tropical evergreen rain forest, mangrove 
tropical/subtropical evergreen seasonal broad-leaved forest 
subtropical evergreen rain forest 
temperate/subpolar evergreen rain forest 
temperate evergreen seasonal broad-leaved forest, summer rain 
evergreen broad-leaved sclerophyllous forest, winter rain 
tropical/subtropical evergreen needle-leaved forest 
temperate/subpolar evergreen needle-leaved forest 
tropical/subtropical drought-deciduous forest 
cold-deciduous forest, with evergreens 
cold-deciduous forest, without evergreens 
xeromorphic forest/woodland 
evergreen broad-leaved sclerophyllous woodland 
evergreen needle-leaved woodland 
tropical/subtropical drought-deciduous woodland 
cold-deciduous woodland 

evergreen broad-leaved shrubland/thicket and dwarf shrubland 
evergreen needle-leaved or microphyllous shrubland/thicket 
drought-deciduous shrubland/thicket and dwarf shrubland/thicket 
cold-deciduous subalpine/subpolar shrubland and dwarf shrubland 
xeromorphic shrubland/dwarf shrubland 
arctic/alpine tundra/mossy bog 
tall/medium/short grassland with 10-40ø70 tree cover 
tall/medium/short grassland with <10% tree or tuft-plant cover 
tall/medium/short grassland with shrub cover 
tall grassland, no woody cover 
medium grassland, no woody cover 
meadow/short grassland, no woody cover 
forb formation 

desert (bare soil) 
cultivation 

a The 31 vegetation classes are defined by Matthews [1983]. The number of equal area pixels of 0.25 o x 0.25 o at the 
equator is indicated for each vegetation type and for each hemisphere. Each pixel surface is 773 km 2. The 10-class 
vegetation classification is also defined, in relation to the Matthews' original classification. 
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ated with the vegetation classification is a land use data 
set that distinguishes five levels of cultivation intensity, 
ranging from 0 to 100% cultivation for 1ø cells. Com- 
bining the vegetation and land use data set gives in- 
formation about actual land cover. Table 1 presents 
Matthews' vegetation classification for the 30 vegeta- 
tion classes, along with a simplified nine-class grouping 
primarily on the basis of life form. For each vegeta- 
tion class, areas with cultivation intensity of > 20% are 
defined as cultivation, which makes up a tenth class. 
Vegetation types in the 10-class grouping are denoted 
by Vn, and those in the 31-class grouping by vn. 

3. Overview of Wavelength Responses 
to Surface Characteristics and 

Presentation of Monthly Maps 
3.1. Visible and Near-Infrared Reflectances 
and the NDVI 

Green vegetation exhibits a characteristic reflectance 
curve. Snow-free reflectance is • 0.05 in the VIS por- 
tion of the spectrum (_<0.7/am) with a steep rise in the 
NIR (0.7-1.1 /am) to about 0.20. Seasonally, the rise 
of full-spectrum albedo from the beginning to the peak 
of the growing season is the net effect of two opposing 
trends [Bauer and Dutton, 1962; Pinty and Szejwach, 
1985]. The spring-summer increase is governed by de- 
clining reflectance in the VIS and increasing reflectance 
in the NIR. Full-spectrum albedo declines from the 
growing season maximum through a reversal of these 
VIS and NIR trends. These seasonal variations result 

in a NIR/VIS ratio that increases during the growing 
season and declines abruptly at the end of the growing 
season. The growing season minimum in the VIS is due 
primarily to chlorophyll absorption at • 0.65/am [Kni- 
pling, 1970]. Individual leaves do not absorb NIR ra- 
diation significantly, and NIR reflectance of vegetation 
canopy is due to complex interactions within the inter- 
nal leaf structure and between the leaves, the canopy 
structure, and the soil background [Scott et al., 1968; 
Knipling, 1970; Sinclair et al., 1971; Gausman, 1974]. 
Colwell [1974] insists on the important role of vegeta- 
tion structure, soil reflectance, and observation geome- 
try (especially solar zenith angle) in understanding and 
predicting vegetation canopy from NDVI. From ground- 
based measurements, several authors have noted the dif- 
ficulty of differentiating between vegetation types from 
reflectances only [Scott ½t al., 1968; Sinclair e! al., 1971] 
and suggest exploring the temporal changes of the re- 
flectances. Tucker [1979] showed correlation between 
the properties of the vegetation canopy and the re- 
flectances (in the VIS at 0.65 /am and in the NIR), 
whereas Scott et al. [1968] only observed such a cor- 
relation in the VIS. 

Different combinations of the reflectances in the VIS 

at 0.65 /am and the NIR have been investigated [e.g., 
Tucker, 1979; Begue and Myneni, 1996]. They are all 
sensitive to the presence of vegetation but are differen- 
tially affected by changes in soil color and brightness. 

NDVI, the most widely used, capitalizes on the mag- 
nitude and seasonal variations of reflectance differences 

between spectral bands. 
NDVI has been found to be correlated with the Frac- 

tion of Photosynthetically Active Radiation absorbed 
by green vegetation (since it is related to spectral albe- 
do), to Leaf Area Index [e.g., Asrar ½! al., 1984; Bcgu½ 
and Myncni, 1996], and to carbon uptake and release 
by vegetation [Fung ½! al., 1987], as well as providing 
information about vegetation phenology [Moulin ½! al., 
1997]. 

3.2. Passive and Active Microwave Responses 
Over Land 

Microwave responses to the land surface include con- 
tributions from the vegetation and from the underly- 
ing surface. An extensive body of research has been 
directed toward a better understanding of the mecha- 
nisms responsible for the microwave emission and back- 
scattering of soil and vegetation, both from theoreti- 
cal analysis and from small-scale field experiments us- 
ing hand-held, truck-mounted, or airborne sensors. A 
review of these studies is presented by Ulaby ½! al. 
[1986], and more recent developments include model- 
ing by Karam ctal. [1995], Wigheron ½! al. [1993], 
Fcvvazzoli and Gucvvicvo [1996], and measurements by 
Matzlcv [1990], Wigheron ½t al. [1997], and Hcwison 

Vegetation absorbs, emits, and scatters microwave ra- 
diation. Radiative properties of vegetation are mainly 
controlled by the dielectric properties of vegetation com- 
ponents, their density, and the relative size of vegetation 
components with respect to the wavelength. Dielec- 
tric properties of vegetation are closely related to their 
water content. Increasing vegetation density usually re- 
duces the emissivity polarization difference [Choudhury, 
1989] and increases the backscattered signal [Frison and 
Mougin, 1996a]. Both theory and in situ measurements 
predict increasing absorption/emission and scattering 
by vegetation with increasing frequency. As a conse- 
quence, the underlying surface contribution is expected 
to increase with decreasing frequency. 

Bare soil response depends on soil dielectric prop- 
erties and roughness. Smooth bare soils have a quasi- 
specular reflection, producing high polarization emissiv- 
ity differences around 500 incidence and low backscat- 
tering coe•cient. When the terrain gets rougher, sur- 
face scattering causes the emissivity polarization dif- 
ference to decrease and the backscattering coe•cient 
to increase. In dry soil, volume scattering can be in- 
volved producing low radar return [Dcroin ½! al., 1997] 
and specific passive microwave signatures [Prigcn! ½! 
al., 1999]. 

Water has a high dielectric constant compared to bare 
soil. For passive measurements, open water surfaces 
(lakes and inundated areas) exhibit very low emissivi- 
ties in both horizontal and vertical polarizations along 
with a high polarization difference. Passive microwave 
measurements can be used to detect inundation [Gid- 
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dings and Choudhury, 1989; Sippel et al., 1998]. Ac- 
tive instruments measure low backscattering coefficients 
over water surfaces. Over water, both passive and ac- 
tive microwave measurements are sensitive to the wind- 

induced surface roughness. 
Microwave emissivities and backscattering coefficients 

are also sensitive to soil moisture. Recent investiga- 
tions include studies by Lakshmi et al. [1997], Owe e! 
al. [1999], and Vinnikov e! al. [1999] for passive mi- 
crowaves. From comparisons with in situ soil moisture 
measurements in Illinois, Vinnikov et al. demonstrate 
that passive measurements around 19 GHz show some 
degree of correlation with soil moisture in regions with 
grass and crops where the vegetation is not dense. Lak- 
shmi et al. reach the same conclusion using simulated 
soil moisture. Wagner e! al. [1999b] analyze the sen- 
sitivity of ERS scattering measurements to soil mois- 
ture in the Canadian prairies. However, soil rough- 
ness and presence of vegetation are serious challenges 
for the detection of soil moisture variations. While sev- 

eral in situ measurements of land surface emissivities 

and backscattering coefficients have been conducted, 
they do not cover the large diversity of surface types 
on the globe, and extrapolation from small-scale mea- 
surements to satellite field of view is not trivial. 

3.3. Presentation of Monthly Maps 

Plate 1 presents monthly values of NDVI (AVHRR), 
emissivity polarization differences, at 37 GHz (SSM/I), 
and scatterometer backscattering coefficients at 5.25 
GHz (ERS-1) for August 1992, along with the vege- 
tation classification map for 10 classes. There are qual- 
itative correspondences between the three types of ob- 
servations and the vegetation classification. 

Desert areas (V9) are characterized by low NDVI, 
large emissivity differences, and low backscattering co- 
efficients, and are clearly noticeable on each map. Vari- 
ations of the backscattering coefficients and the emis- 
sivities over desert areas are interpreted in terms of 
rock/sand types and topography. Higher values of 
backscattering and lower values of emissivity polariza- 
tion differences are found over high topography in the 
desert (Tibesti and Air in the Sahara). 

Tropical rain forests display large backscattering co- 
efficients and negligible emissivity polarization differ- 
ences. However, the tropical rain forest in Africa shows 
rather low NDVI values compared to the rain forest in 
South America. Grassland and woodland are also dis- 

tinguished in Africa and in South America. The sharp 
gradient southward of 15øN in Africa, observable on all 
the maps, corresponds to the Sahelian transition be- 
tween arid shrub grassland and more humid grassland 
with tree cover. 

Water surfaces (lakes, rivers, and wetlands) show 
high emissivity polarization differences at 37 GHz. The 
major river systems (e.g., Congo and Amazon) and wet- 
lands (e.g., Pantanal in South America) appear clearly 
in the microwave emissivity map while they are not eas- 
ily detectable in the NDVI or in the backscattering co- 
efficient maps. With the ERS-1 scatterometer operat- 

ing at 5.25 GHz, one would expect less absorption by 
vegetation than at the higher SSM/I frequencies and a 
stronger contribution from the underlying surface. The 
opposite is observed. See section 5.2.3 for further dis- 
cussion about this signature. 

4. Potential of the Satellite Data Sets 

for Vegetation Monitoring 
4.1. Distinguishing Major Vegetation Classes 

Figure i shows histograms of the different observa- 
tions for four major vegetation types in areas in the 
Northern Hemisphere where the cultivation intensity 
is _•20%. Evergreen and deciduous forests have been 
grouped together because during summer months no 
significant differences are observed; the same is done for 
woodland. As described above, the analysis is expanded 
beyond the parameters commonly investigated for vege- 
tation studies (NDVI and emissivity polarization differ- 
ences) to include an examination of individual channel 
responses. For a given observation the histograms are 
normalized to have the same area, giving an estimate 
of the probability distribution function. 

From separate AVHRR channel information (VIS or 
NIR), only two classes of vegetation appear to be dis- 
tinguishable, and even these have substantial overlap in 
reflectance distributions. Because absorption by chloro- 
phyll decreases with the amount of photosynthetically 
active material in the vegetation, the visible reflectance 
is lower for grassland than for woodland and forest, as 
expected. Lower reflectances could also be interpreted 
in terms of larger fractional coverage by bare soils which 
have higher VIS reflectances. There is more variability 
in the NIR than in the VIS. Both the VIS and the NIR 

signals saturate for higher biomass density' it is not 
possible to distinguish between woodland, forest, and 
rain forest, based simply on a month's data. Combin- 
ing those two pieces of information in the NDVI helps 
differentiate woodland from forest, but rain forest and 
other forests still appear very similar. Other authors 
also observed saturation of the NDVI response for high 
green-leaf density [e.g., Tucker ½t al., 1985]. There are 
two peaks in the woodland histogram for the NDVI 
(also seen on the VIS histogram) with the lower value 
peak corresponding to arid East Africa. 

For SSM/I, vegetation information is similar at all 
frequencies. Separating vegetation via individual SSM/I 
channels (vertical or horizontal polarization) cannot be 
done. The emissivity in horizontal polarization is lower 
for grassland than for tree-covered areas. With de- 
creasing vegetation density the contribution of bare soil 
surfaces within a pixel increases, reducing emissivity 
in the horizontal polarization. The emissivity in verti- 
cal polarization shows little variation: emissivities are 
slightly lower for rain forest than for other forests re- 
gions, which may be explained by the large water vol- 
ume in big leaves inducing significant scattering or by 
interception of rain droplets by the leaves. However, 
given the absence of in situ radiometric measurements 
over rain forest, these hypotheses cannot be confirmed. 
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Plate 1. August 1992 monthly satellite products presented on an equal-area grid of 0.250 x 0.250 
at the equator. Top to bottom: NDVI (AVHRR) from the Pathfinder, emissivity polarization 
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efficient in decibels, and simplified version of the Matthews [1983] vegetation classification (10 
classes) at a spatial resolution of 10 x 1 ø. 



20,672 PRIGENT ET AL.' CHARACTERIZATION OF VEGETATION BY SATEl. LITE OBSERVATIONS 

rainf orest (V1) f. orest (V.2+V3) woodl and(V4+V5) grass 1 and(V6) 
(n=5388) (n=27927) (n=8808) (n=21711 ) 

1. / ' ' •' /[ ' ' ' 
85GHz 85GHz 

.8 

.8 

.0 

1.0 80 .90 1.0 O0 .04 .08 

.8 

.4 

80 .90 

i i 

37GHz 

8O .90 

19GHz ! 

.8 

37GHz 

1.0 80 

i I 1 

t 37GHz 

.90 1.0 00 .04 .08 

19GHz 
i i i i 

19GHz 

i i 

5.3GHz 

ß 80 .90 1.0 .80 .90 1.0.00 .04 .08-16 -11 

V polarization H polarization V-H polarizations Backscattering (dB) 
emissivity SSM/I emissivity SSM/I emissivity SSM/I Scattercn•eter ERS 1 AVHRR 

0.0 0.2 0 4 

VIS ref 1 .- 
_ 

o o 0.1 0.2 

ND¾I /\I1 t 

/ 

-6 .0 .4 .8 

Northern Hemisphere - August 1992 

Figure 1. Histograms of the different observations for four major vegetation types, for the 
Northern Hemisphere. For a given observation, histograms are normalized to have the same 
area. Evergreen and deciduous forests have been grouped, as well as evergreen and deciduous 
woodlands. Only pixels with cultivation intensity _•20% are considered. The number of pixels is 
indicated. 

The emissivity polarization difference helps distinguish 
rain forest from forest/woodland and from grassland. 
Nevertheless, discrimination between forest and wood- 
land is not possible. 

With increasing vegetation biomass the backscatter- 
ing signal from ERS-1 increases and the four histograms 
are rather well separated, although grassland shows a 
broad histogram, and overlap occurs between forest and 
woodland. Given the estimated error of 5%, a ~4 dB 
range between the peaks of tree-dominated classes rep- 
resents a significant vegetation signal that is promising 
for discrimination of vegetation density gradients. The 
grassland backscatter histogram is wide as it is for all 
other observations (except for emissivity in vertical po- 
larization). Grassland shows two peaks in the NDVI: 
the peak with high NDVI values corresponds to more 
humid grassland with partial tree cover, while the other 

peak represents more arid grasslands with less tree cover 
or with shrub cover (see the 31-class vegetation classi- 
fication in Table 1). By the same token, forest and 
woodland classes may also contain partial coverage by 
grassland, which might explain the difficulty of sepa- 
rating the grassland and the woodland/forest classes. 
Similar results are obtained in the Southern Hemisphere 
but with more confusion between forest and woodland. 

4.2. Detecting Vegeta[ion P henology 

Histograms of Northern Hemisphere observations for 
six vegetation types for three months corresponding to 
different vegetation stages are shown in Figure 2. Loca- 
tions where cultivation occupies more than 20% of the 
cell are excluded as well as pixels that are snow covered 
for at least one of the three months. The snow cover in- 
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formation comes from the NOAA operational analysis. 
The mean difference between August 1992 and Febru- 
ary 1993 is given, along with its standard deviation. 

Rain forests have a stable signature in time for both 
passive and active microwave observations, for all 
months. NDVI responses over rain forest are variable, 
especially in the Southern Hemisphere (not shown). 
This seasonal variation was also reported by Tucker 
et al. [1985] for Africa, who explain their findings as 
due to the specific ecology of the African rain forest 
compared to the other rain forests elsewhere. However, 
the fluctuations in Figure 2 can more probably be at- 
tributed to contamination by atmospheric features such 
as water vapor and clouds. Gutman [1999] argues that 
over rain forest the NDVI decreases with local zenith 

angle, driven by a decline in the NIR due to water va- 
por absorption. High frequency of cirrus contamination 
over the tropics is also likely to induce spurious NDVI 
variability. Figure 3 presents scatterplots of VIS and 
NIR reflectances, NDVI, and radar backscattering ver- 
sus the high cloud amount from ISCCP, for a 6 o x 6 o 
area in the African rain forest (3øS 3øN; 17øE 23øE) for 
a year. NDVI and VIS reflectances show unexpectedly 
large variances over the year that are linearly corre- 
lated to the amount of high-clouds. No such correlation 
is found with the NIR and the radar signals, ruling out 
a possible correlation between high cloud amount and 
vegetation characteristics. 

With microwave measurements (emissivity polariza- 
tion difference and radar backscattering), responses are 
more stable throughout the year for evergreen forests 
(V3) than for deciduous ones (V2) •s expected. In tree- 
covered regions the emissivity polarization difference 
stays low even in winter, and backscattering coefficient 
remains high. Interaction between the microwave signal 
and the vegetation is not limited to green leaves in the 
canopy but includes scattering and emission/absorption 
by woody parts comprising the macrostructure of the 
canopy. NDVI or individual VIS and NIR channels do 
not distinguish the two forest types: differences in the 
histograms for these three months are about the same 
for deciduous and evergreen forests, and surprisingly, 
the deciduous forest has the same signature in August 
and December. 

Especially for grasslands, seasonal variations in the 
NDVI are predominantly due to variations in the NIR 
and not in the VIS. Changes in the VIS channel are 
small over the year and are of the order of the measure- 
ment noise. For the NIR, seasonal changes are larger, 
but they have similar range for all vegetation types ex- 
cept rain forest. As discussed by Gutman [1999], solar 
zenith angle variations can be partly responsible for the 
seasonal cycle of the reflectances. Water vapor varia- 
tions can also modulate the signals. Justice et al. [1991] 
observed that water vapor absorption in the NIR chan- 
nel may drive part of the NDVI seasonal variation, es- 
pecially over grassland. Tanr• et al. [1992] show that 
for grassland over Mali, correcting the NDVI from water 
vapor contamination can increase it by 0.1 for wet days. 
C. Brest at NASA Goddard Institute for Space Studies 

(GISS) (personal communication, 2000) also performe(• 
a water vapor correction to AVHRR data and observed 
a change of ,•0.05 in reflectances over tropical land ar- 
eas. Water vapor induced change in the NDVI is mod- 
ulated by the water vapor amount, the geometry of the 
observation, and the surface reflectance itself: simple 
correction of the NDVI values cannot be easily imple- 
mented, and a full treatment of the water vapor absorp- 
tion is a requirement for adequate interpretation of the 
reflectances in terms of surface properties only. 

Individual passive microwave channels are not able to 
capture the seasonal cycle of any vegetation type, and 
mean differences between maximum and minimum in 

the vegetation cycle is within the noise level (,• 0.013). 
However, both the emissivity polarization difference 
and the backscattering coefficient show realistic vari- 
ations within the year that can be attributed to vege- 
tation seasonality, although the magnitude of the mi- 
crowave seasonal response is small, especially for the 
passive measurements. 

4.3. Ability •o Distinguish Between Vegetation 
Subclasses 

The different distributions of forests and woodlands 

(see Table 1) are physiognomically driven by climate, 
and, as a consequence, differences in the signals are not 
expected from, for instance, tropical and temperate ev- 
ergreen needle-leave forests. That has been verified but 
is not shown here. 

Separability between broad-leaved and needle-leaved 
tree-covered areas is very difficult to assess because 
the two leaf types exist in different climate regions. 
For instance, evergreen broad-leaved woodland (v13) is 
concentrated in coastal regions in Australia, while ev- 
ergreen needle-leaved woodland dominates in Canada 
above 50øN. Attributing small signature differences ex- 
clusively to leaf type is misleading, given the large cli- 
matological differences between the two regions. 

The grassland subclasses (classes 23 to 29 in the 31- 
class classification) represent graduations in precipita- 
tion which translate into variations in biomass density 
that have different signatures in the observations. Fig- 
ure 4 shows time series of three grassland types v23 
to v25 which represent grassland with decreasing tree 
and shrub cover in the two hemispheres (see Table 1). 
With increasing aridity and decreasing woody cover- 
age, biomass density is lower and one expects to ob- 
serve (1) increasing values of the polarization emissiv- 
ities for passive microwave, (2) reduced backscattering 
signal for radar, and (3) lower NDVI values especially 
during dry months. In the Southern Hemisphere, these 
patterns are apparent. However, in the Northern Hemi- 
sphere, differences between v23 and v24 are opposite to 
what is expected for all instruments. In these areas of 
low vegetation density, changes in soil moisture can af- 
fect the microwave observations [e.g., Lakshmi et al., 
1997; Vinnikov et al., 1999; Owe et al., 1999]. If only 
the microwave observations had an unexpected behav- 
ior, variations in soil moisture could be suspected. xOn 
the contrary, the NDVI also does not show the antic- 
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Figure 3. Scatterplots of NDVI, VIS, and NIR reflectances, and radar backscattering versus the 
high cloud amount derived from ISCCP, for a 60 x 60 area in the African rain forest (3øS 3øN; 
17øE 23øE) for a year. The correlation coefficient is indicated. 

ipated response and the vegetation classification may 
be questioned. Differences between classes 26 to 28 are 
related to grassland height from tall to short grassland, 
which should correspond to decreasing vegetation den- 
sity: the expected responses are observed with all the 
measurements (not shown) but encompass substantial 
scatter. The vegetation classification should be revis- 
ited in the light of these satellite measurements, espe- 
cially in Africa where land use practices may not be well 
documented and where anthropogenic modification of 
the vegetation on short timescales is occurring. 

4.4. A Case Study' The Desert/Rain Forest 
Transition in Africa 

Values of NDVI, ERS-1 backscattering, and SSM/I 
emissivity polarization differences (Figure 5) are com- 
pared for August and February along a cross section at 
longitude 20øE that encompasses a strong north-south 
gradient of vegetation, from the desert in Chad (lati- 

rude 20øN) to the rain forest in the Democratic Repub- 
lic of Congo (latitude 0 ø N). In this region the vegetation 
phenology is driven by rainfall, with an increase in the 
rainy season duration and in the amount of precipita- 
tion from north to south. For specific sites along the 
cross section the annual cycle of the three observations 
are presented along with the precipitation cycle as given 
by the Global Precipitation Climatology Project from 
merged infrared and microwave satellite data and gauge 
measurements [Huffman, 1996]. The vegetation type is 
indicated as given by Matthews [1983] 31-type classifi- 
cation. All the variables are normalized for an easier 

comparison (see the figure caption). 
North of 16øN the three observations are stable in 

time, with low NDVI values and high emissivity po- 
larization differences. The backscattering signatures 
change abruptly between 17øN and 18øN: around 17øN, 
sand dunes induce a very low backscattering signature 
because of volume scattering in sand, whereas north 

Figure 2. For the Northern Hemisphere and for the different observations, histograms of six 
vegetation types, for three months that correspond to different vegetation stages. Areas where 
the cultivation intensity is >20% are excluded, as well as pixels that are snow covered for at least 
one month. The number of pixels is indicated. Numbers indicate the mean difference between 
August 1992 and February 1993, along with the standard deviations in parenthess. 
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of 18øN, the backscattering signal increases with the 
presence of rocks [Food and A9riculture Organization 
(FA O)- UNESCO, 1977]. 

South of 16øN, differences between summer and win- 
ter increase for all observations. From (16øN, 20øE) to 
(6øN, 20øE) the seasonal cycle of the various grassland 
types (from classes 23 to 25) is well captured by the 
three types of observations, and the observations vary 
in phase. Vegetation, associated with the rainy season, 
develops rapidly as soon as the rainy season starts, fol- 
lowed by a slow decline during senescence. Frison et al. 
[1998] analyzed the relative contributions of soil and 
vegetation in a case study in a semi-arid environment 
in Northern Sahel (Mali), concluding that although the 
soil component is always large, the backscattering coeffi- 
cient reflects vegetation development well. As expected, 
passive and active microwave responses are very stable 
for rain forest (see the annual cycle at iøN, 20øE). How- 
ever, for the same area, NDVI exhibits large and rapid 

fluctuations during the year that cannot be explained 
by vegetation phenology. 

At several locations along the cross section the SSM/I 
response shows large declines in the emissivity polariza- 
tion differences, especially in August during the rainy 
season. At 10øN, for instance, the decrease in emissivity 
polarization difference is related to the Slamat swamps 
in Chad. The decline around laøN could be related 
to swamps around the Batha River in Chad, but that 
should be further investigated. Around 2 oN in the rain 
forest the Congo River and its associated swamps in- 
duce a decrease in the emissivity polarization. There 
are no significant changes in the backscattering coef- 
cient nor in the NDVI. 

4.,5. Correlation Between the Three Types of 
Observations 

Figure 6 represents the scatterplots of all possible 
pairs of observations, for the NDVI, the backscattering 

Figure ,5. Comparisons of AVHRR NDVI, ERS-1 backscattering coefficient, and SSM/I emis- 
sivity polarization difference at 37 GHz along a cross section at 20øE from 20øN to the equator, 
for August 1992 and February 1993. The vegetation class in Mailhews [1983] classification is 
indicated for each degree. For five specific sites along the cross section the full seasonal cycle is 
given with the precipitation rate in mm.d -• extracted from the Global Precipitation Climatol- 
ogy Project data set. For comparison purposes, all the values are linearly normalized between 0 
and 1 that correspond to variations from 0 to 1 for the NDVI, from-26 to-6 dB for the ERS-1 
backscattering coefficient, from 0.15 to 0.0 for the SSM/I emissivity polarization difference, and 
from 0 to 12 mm.d -• for the rain rate. 
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Figure 6. Scatterplots of all possible pairs of observations for the AVHRR NDVI, the ERS-1 
backscattering coeffcient, and the SSM/I emissivity polarization difference at 37 GHz for four 
major vegetation types. Results are presented for the Southern Hemisphere during summer 
(February 1993). For each scatterplot the population contours at 0.5% and 0.2% are drawn. 

coefficient, and the emissivity polarization difference at 
37 GHz, for four major vegetation types in South Amer- 
ica in August. For each scatterplot the population con- 
tours at 0.2% and 0.5% are drawn. 

For the rain forest the ERS backscattering coeff- 
cients show little dispersion, whereas the NDVI and 
the emissivity polarization difference exhibit larger scat- 
ter. For the NDVI, atmospheric contaminations are 
suspected. Pixels with large emissivity polarization dif- 
ferences (_•0.01) are concentrated in coastal areas and 
around the major river systems (Congo in Africa and 
the Amazon in South America), confirming high sensi- 
tivity of the passive microwave measurements to water 
surfaces compared to the other measurements. ERS-1 
backscattering signal shows more dynamic range than 
SSM/I in densely vegetated areas outside wet areas, 
with population contours elongated along the backscat- 
tering coeffcient axis. For emissivity polarization dif- 
ferences between 0.00 and 0.02, ERS backscattering co- 
effcient varies between ~-7 and ~-12 dB over forest and 

woodland, with lower values of the backscattering co- 
effcients corresponding to the transition zones between 
forest/woodland and grasslands. ERS-1 radar signal 
has the ability to detect density gradients in forested 
areas. 

5. Integrated Analysis of Spectral 
Variations With a Clustering Technique 

5.1. Description of the Clustering Technique 

In the preceding sections we analyzed the response 
of individual spectral bands to various types of vegeta- 
tion. We also examined relationships between pairs of 
spectral observations. A clustering technique has been 
developed to integrate all the data sets to obtain an 
analysis of the variations of one spectral band with re- 
spect to the others. At this stage the clustering tech- 
nique is a tool to interpret the variability of the data 
and is not yet optimized for vegetation classification. 

Let {X i • R n ; i - 1,..., M} be an observa- 
tional data set, where n is the dimension of the ob- 
servation (i.e., the number of channels in the following) 
and M is the number of observations (i.e., the number of 
monthly pixels). The goal of unsupervised classification 
algorithms is to classify data sets into subgroups that 
optimally describe the statistical variability present in 
the data, without any a priori information or guidance 
about classes. Clustering techniques define K proto- 
types (or clusters) pi that discretizes the continuous 
observations and optimally quantify their variability. 
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Plate 2. Cluster map derived from the Kohonen [1984] scheme for August 1992. 
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Each observation X i is associated with the prototype 
for which the distance d(X i, pk) is smallest. 

Kohonen [1984] topological feature maps are also 
called self-organizing topological maps. The distin- 
guishing feature of this algorithm is that a neighbor- 
hood requirement is imposed on the prototypes [$chaale 
and Putter, 1995; Aires, 1999], so that when the al- 
gorithm has converged, prototypes corresponding to 
nearby points on the map grid have nearby locations in 
the data space. This additional information on the ex- 
tracted prototypes helps interpret the prototypes. The 
neighborhood system adopted in this study is a one- 
dimensional ordering of prototypes where the neighbor- 
hood of a prototype is its two nearest neighbor pro- 
totypes. This neighborhood system is well adapted to 
the definition of a statistical index whose value is to 
describe the links and variabilities in the data set. 

The Kohonen [1984] classification algorithm is ap- 
plied to a year of monthly observations for SSM/I, ERS- 
1, and AVHRR (M=12). Each observation vector cor- 
responds to one snow-free pixel of 0.25 o x 0.25 o at the 
equator and has 13 components (n=13) which are (1) 
nine SSM/I derived variables: the emissivities for each 
polarization and their polarization difference at 19, 37, 
and 85 GHz; (2) the ERS-1 backscattering coefficient; 
and (3) the AVHRR NDVI and reflectances in the VIS 
and NIR. Each observation in the observational vector 

is normalized by its mean spatial variance over a year. 
The same weight is given to each instrument, mean- 
ing that every observation is weighted by a coe•cient 
1/9, 1/1, and 1/3 for SSM/I, ERS, and AVHRR, re- 
spectively. The number of prototypes K is chosen to be 
30. In this study, the distance d is the absolute value 
of the difference; compared to the traditional EuclidJan 
distance, it gives less weight to potential outliers. 

5.2. Results of the Clustering and Joint 
Analysis of the Spectral Bands 

The Kohonen [1984] algorithm is applied to estimate 
the K = 30 clusters, Pk, that optimally quantify the 
data set. Upon convergence of the algorithm, each ob- 
servation X • is associated with its closest prototype us- 
ing the distance d. A cluster map is produced for each 
month; Plate 2 shows the results for August 1992. Fig- 
ure 7 represents the n = 13 coordinate values (i.e., the 
channel observations) of each prototype P• with respect 
to the cluster number, from cluster i to cluster K = 30. 
The standard deviation of the subgroup of observations 
associated with each prototype is added to the figure. 
It is a measure of the dispersion of the observations in 
a subgroup. For a prototype a low standard deviation 
in a channel means that the channel provides good dis- 
criminant information in the clustering solution: the 
relationship between the cluster and the channel is not 
ambiguous. On the other hand, a high standard devi- 
ation means that the prototype is relatively insensitive 
to that channel. High standard deviations can origi- 

hate from instrumental noise, from spatial heterogene- 
ity within single pixels, or from variability that con- 
taminates the channel but is not related to the surface 

properties (e.g., atmospheric contamination). 
The number of prototypes K was chosen so that, for 

each prototype, at least one of the channels provides 
statistical discrimination: for this channel the difference 

between the two consecutive prototypes is above the 
standard deviation of subgroups associated with each 
prototype. The ambiguity between prototypes is thus 
minimized. As a consequence, each class shows good 
spatial consistency on the maps. The variability in each 
cluster subgroup, which depends on the value and the 
number of observations in the subgroup, is uniformly 
distributed by the Kohonen [1984] algorithm in each 
prototype for an optimal quantification of the data set. 

The 30 clusters have been separated into three major 
cover types (see Plate 2): (1) arid environments (clus- 
ters 1 to 10), (2)vegetated areas (clusters 11 to 24), 
and (3) wet regions (clusters 25 to 30). Clusters 11 to 
24 can be compared to a vegetation density gradient 
that shows similarities with Matthews [1983] vegetation 
classification. Although it is not our purpose here to 
classify the vegetation, a quick comparison is performed 
between the clustering results and Matthews' classifica- 
tion for the Northern Hemisphere in August. 58% of 
class V1 (rain forest) in Matthews' classification corre- 
spond to cluster 24, and 17% are in cluster 25. For- 
est types (V2-]-V3) have their maximum populations in 
cluster 21, while woodland (V4-]-V5) is concentrated in 
cluster 19. 

5.2.1. Arid environrheums. Clusters i to 3 cor- 

respond closely to sandy deserts [FAO-UNE$CO, 1977] 
with high reflectances in the VIS and NIR, low backscat- 
tering signals from ERS-1, and large polarization dif- 
ferences for SSM/I. Clusters 4 to 8 have similar VIS 
and NIR reflectances, while the backscattering signal 
increases by •09 dB due to increasing surface roughness 
related to the combined effects of rocky surfaces and 
topography. SSM/I polarization differences decrease 
with surface roughness. Clusters 9 and 10 correspond 
to desert areas in high topography, and they show a 
large backscattering signal compared to the surround- 
ing areas. Radar signals have a high sensitivity to sur- 
face roughness that could be used to characterize desert 
properties, especially in the context of estimating dust 
sources [Marticorena et al., 1997]. 

5.2.2. Vegetated areas. The cluster numbers be- 
tween 11 and 24 could be linearly transformed into a 
multivariate-source index related to vegetation density. 
Clusters 11 to 13 are predominantly located in arid ar- 
eas. From cluster 14 to 24, NDVI, radar backscatter- 
ing, and the microwave polarization differences show a 
smooth increase corresponding to increasing vegetation 
density. Changes in the backscattering signal amount to 
6 dB, which is very significant compared to the 5% ac- 
curacy of the measurement. In addition, the backscat- 
tering standard deviation is very low for these clusters, 
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indicating that the radar signal is the most effective 
discriminator. Although NDVI increases smoothly, its 
large standard deviation in these clusters shows that 
separation between clusters is not closely related to its 
value. NIR does not vary much, while VIS reflectance 
changes from 0.15 to 0.05. In vegetated areas, emissiv- 
ities in the vertical polarization decline with increasing 
frequency, which is contrary to model predictions. This 

has already been discussed by Prigcnl el al. [2000]. In 
the horizontal polarization, emissivities are almost con- 
stant except for very densely vegetated areas, reinforc- 
ing the hypotheses of stronger scattering by vegetation 
with increasing frequency. These signatures will be fur- 
ther explored with the help of a radiative transfer model 
[Wigheron el al., 1993]. 

5.2.3. Wetland areas. From cluster 25 to 30 
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the passive microwave signals vary substantially with 
rather low standard deviations, while the other vari- 
ables show small changes with large standard devia- 
tions. This result confirms the high sensitivity of mi- 
crowave signals to the presence of water and the poten- 
tial for microwave detection of inundated areas. Plate 

3 shows the response of the three instruments in the 
Amazonian rain forest for a year. While the passive mi- 
crowave clearly detects the location and seasonal cycle 
of wetlands surrounding the river, the active microwave 
instrument does not. With increasing frequency, one 
expects higher attenuation and scattering by vegeta- 
tion, and as a consequence a lower sensitivity to soil 
properties. Although operating at a lower frequency 
than SSM/I, ERS-1 scatterometer shows much less sen- 
sitivity to inundated areas. This suggests that scat- 
tering by the vegetation could dominate the radiative 
transfer processes in the canopy, exceeding the absorp- 
tion/emission contribution within the vegetation. How- 
ever, complex physical interactions take place between 
the soil surface and the canopy, and further investiga- 
tions have to be conducted. Unified radiative transfer 

models are now capable of simulating both the emissiv- 
ity and the backscattering responses of vegetation and 
soil [Wigheron ctal., 1993; Karam e! al., 1995]. Using 
a radiative transfer model at 1.5 GHz, Duct al. [2000] 
attempt to assess which of the two sensing techniques 
(passive or active) is less affected by vegetation cover 
when trying to estimate soil moisture. They conclude 
that the two sensor types have similar sensitivity to veg- 
etation. Joint analysis of the emissivity and backscat- 
tering model responses, compared to ERS and SSM/I 
observations, will help better understand the vegetation 
and soil interaction with the microwave radiation. 

6. Conclusion 

This study presents a global evaluation and compar- 
ison of measurements in the visible and near-infrared, 
as well as passive and active microwave observations for 
characterizing vegetation cover and seasonality. It is 
the first step toward global characterization of the land 
surface using multisatellite observations comprising a 
large spectral range. A year of monthly observations of 
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AVHRR (NDVI, visible, and near-infrared reflectances), 
SSM/I (emissivities between 19 and 85 GHz), and ERS- 
1 (wind scatterometer backscattering coefficients) was 
analyzed with a spatial resolution of 0.25 o x 0.25 o at 
the equator. The capacity to discriminate various veg- 
etation types is assessed in the context of the Matthews 
[1983] vegetation classification, with special emphasis 
on the ability to detect vegetation phenology and den- 
sity. A clustering technique derived from the Kohonen 
[1984] topological maps is developed to integrate obser- 
vations from all three instruments and to provide a syn- 
thesis of the sensitivities of the suite of spectral bands 
to surface properties. 

NDVI varies from -,, 0.1 to ~ 0.7 in response to vege- 
tation density with an estimated error of 0.1; the index 
saturates in forested areas. The NDVI has a marked 

seasonal cycle for most vegetation types that is mostly 
driven by changes in the near-infrared reflectances, not 
by variations in the visible reflectances. Time series 
over evergreen vegetation show spurious seasonal vari- 
ations of up to 0.2 in the NDVI. Significant cirrus con- 
tamination is apparent over the African tropical for- 
est. Atmospheric contamination (clouds, water vapor, 
and aerosols) and solar zenith angle dependences also 
alter the signal. A full correction for atmospheric con- 
tamination of the AVHRR VIS and NIR reflectances is 

required in order to interpret the reflectances and/or 
NDVI in terms of vegetation only. This task has been 
undertaken at NASA GISS. Understanding spatial and 
temporal variations in the VIS and NIR reflectances is 
of primary importance for the interpretation and pre- 
diction of the surface albedo, which is a key parameter 
in the Earth energy budget. 

Passive and active microwave observations respond to 
the absorption/emission and scattering by vegetation 
elements including woody parts and are not directly 
sensitive to the photosynthesis activity. These measure- 
ments therefore complement the AVHRR observations 
by indicating structural density. 

Active microwave backscattering observations (ERS- 
1) are not affected by variations in atmospheric condi- 
tions and do not require significant preprocessing. Mea- 
sured with an accuracy of 5%, backscattering signals 
exhibit a high potential to characterize bulk vegeta- 
tion density including green-leaf and woody structures, 
with -,,10 dB changes from rain forest to arid grassland. 
In contrast to NDVI, they have a stable seasonal re- 
sponse over evergreen vegetation and show a realistic 
annual cycle over deciduous vegetation. In arid places, 
backscattering measurements are very sensitive to sur- 
face roughness and show very strong signatures over 
sand dunes, making them a potential tool for desert 
studies. Unaffected by atmospheric variability, scat- 
terometers appear to be very promising instruments for 
land surface characterization, due to their high sensi- 
tivity to vegetation, as well as for their potential value 
in desert investigations. 

This study reports on a new atlas of microwave emis- 
sivities calculated from SSM/I between 19 and 85 GHz 
using ancillary data to remove atmospheric contribu- 

tions. Emissivity polarization differences from this data 
set show some ability to characterize vegetation types 
but exhibit a smaller dynamic range than ERS-1 obser- 
vations do; values range from • 0.00 for tropical forests 
to •0.08 for arid grasslands, with an estimated error of 
•0.013. Vegetation discrimination is not possible from 
individual polarizations and sensitivity to vegetation 
does not vary substantially with frequency. However, 
passive microwave measurements exhibit a strong sen- 
sitivity to standing water, making it possible to detect 
wetlands even in densely vegetated areas. A method 
to detect the seasonality and extent of inundated areas 
is under development, using both passive and active 
microwave instruments; the active observations help to 
estimate signal attenuation by vegetation. Although 
operating at a lower frequency, ERS-1 scatterometer 
observations show much less sensitivity to inundated 
areas. This suggests that scattering by the vegeta- 
tion may dominate the radiative transfer processes in 
the canopy, exceeding the absorption/emission contri- 
bution within the vegetation. Unified radiative transfer 
models are now capable of simulating both the emissiv- 
ity and the backscattering responses of vegetation and 
soil [Wigneron el al., 1993; Karam el al., 1995]. In- 
tegrated analysis of the emissivity and backscattering 
model responses, compared to ERS and SSM/I obser- 
vations, will help better understand the interaction of 
vegetation with microwave radiation. 

Matthews [1983] vegetation classification is used as a 
land- urface reference data set in this analysis and it ap- 
pears that this classification should be revisited in the 
light of this study, especially in transition zones and 
in semi-arid environments. DeFries et al. [1995] re- 
viewed dominant biophysical processes and concluded 
that among the most important vegetation characteris- 
tics controlling biospheric fluxes are growth form (tree, 
shrub, and herb) and seasonality of woody vegetation 
(deciduous and evergreen). Our study suggests that 
an integrated analysis of a suite of observations from 
three satellite instruments may successfully character- 
ize large-scale features of these two vegetation proper- 
ties. This analysis has the added advantage of iden- 
tifying wetland features which play important roles in 
hydrological and biogeochemical cycles. Unsupervised 
clustering techniques using Kohonen [1984] topological 
maps not only helped the joint interpretation of this 
suite of spectral data sets but also showed potential for 
land cover classification. From the sensitivity analy- 
sis described here, an optimal set of variables can be 
selected that are relevant for a variety of land cover 
characterizations. Further improvements of the cluster- 
ing technique will include the use of observation time 
series for a year instead of monthly data in order to 
take into account the seasonal cycle of each vegetation 
type and the use of a priori information (altitude and 
latitude). Combining observations from the three in- 
struments makes it possible to benefit from their com- 
plementary strengths to extract maximum information 
about vegetation biophysical characteristics on a global 
basis and to minimize problems related to one instru- 
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ment only. Such an approach should improve the ability 
to monitor changes with time based on series of bench- 
mark behaviors derived from the suite of instruments. 
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