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[1] The components of the Amazon water budget and their spatiotemporal variability are
diagnosed using monthly averaged remote sensing‐based data products for the period
September 2002‐December 2006. The large Amazon basin is divided into 14 smaller
watersheds, and for each of these sub‐basins, fresh water discharge is estimated from the
water balance equation using satellite data products. The purpose of this study is to
learn how to apply satellite data with global coverage over the large tropical regions;
therefore several combinations of remote sensing estimates including total water storage
changes, precipitation and evapotranspiration. The results are compared to gauge‐based
measurements and the best spatiotemporal agreement between estimated and observed
runoff is within 1 mm/d for the combination of precipitation from the GPCP and the
Montana evapotranspiration product. Mean annual precipitation, evapotranspiration and
runoff for the whole basin are estimated to be 6.3, 2.27 and 3.02 mm/d respectively but also
show large spatial and temporal variations at sub‐basin scale. Using the most consistent
data combination, the seasonal dynamics of the water budget within the Amazon system
are examined. Agreement between satellite based and in situ runoff is improved when
lag‐times between sub‐basins are included (RMSE from 0.98 to 0.61 mm/d). We estimate
these lag times based on satellite‐inferred inundation extents. The results reveal not only
variations of the basin forcing but also the complex response of the inter‐connected
sub‐basin (SB) water budgets. Inter‐annual and inter‐SB variation of the water
components are investigated and show large anomalies in northwestern and eastern
downstream SBs; aggregate behavior of the whole Amazon is more complex than can be
represented by a simple integral of the forcing over the whole river system.

Citation: Azarderakhsh, M., W. B. Rossow, F. Papa, H. Norouzi, and R. Khanbilvardi (2011), Diagnosing water variations
within the Amazon basin using satellite data, J. Geophys. Res., 116, D24107, doi:10.1029/2011JD015997.

1. Introduction

[2] Understanding, characterizing and predicting the
distribution and cycling of terrestrial waters are major goals
of hydrology and climate research as well as major require-
ments for water resource management. However, seasonal
and interannual variations of the water budget terms,
including precipitation, evapotranspiration, runoff and sur-
face and sub‐surface water storage are still not well know, at
least at regional to global scales [Bullock and Acreman,
2003].

[3] The Amazon basin is of special interest because, with
the largest drainage area in the world, covering about 40%
of South America, variations of water exchange within its
watershed can have a strong regional effects on the global
and tropical climate systems: the Amazon in its own right
makes the largest contribution (15%–20%) to the total fresh
water discharge to the global ocean. Changes in atmospheric
circulation and precipitation can translate into changes in
the discharge to the ocean and affect the atmospheric mois-
ture transport from the Amazon region to adjacent regions
[Marengo, 2005; Espinoza Villar et al., 2009a, 2009b].
Moreover, internal dynamics of this drainage system is
complicated by the fact that the watershed extends both north
and south of the equator and, as a result, has different wet and
dry seasons. In the last few years, the Amazon basin has
experienced severe extreme events. For instance, in 2005 a
drought that affected the western parts of the basin during the
dry season was blamed for lower water levels in the central
and eastern parts of the river system, leading to serious
effects on human activity and the biosphere and also to
higher sea surface temperature (SST) in the tropical North
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Atlantic by up to two degrees Celsius [Marengo et al.,
2008; Zeng et al., 2008]. In 2009, the Amazon basin
was hit by large and severe flooding with the central and
northern regions experiencing their worst flooding in over
half a century [Chen et al., 2010].
[4] Large‐scale water‐budget studies for the Amazon

basin have been conducted since the late 1970s using dif-
ferent techniques and atmospheric data sets from radiosondes
to global reanalysis [Costa and Foley, 1997; Leopoldo et al.,
1987; Roads et al., 2002; Vörösmarty et al., 1996]. All these
studies have emphasized the importance of remote forcing
on the variations of the components of the local water
budget. Several studies also investigated the closure of the
terrestrial water budget and/or estimated river discharge is the
Amazon using in situ gauge streamflow measurements
together with a simple water balance equationmethod (R = P‐
ET‐DS, where R = runoff, P = precipitation, ET = evapo-
transpiration and DS = total water storage changes), or
hydrological modeling forced with meteorological observa-
tions, numerical simulations or a combination of remote
sensing‐based water height estimates and height‐discharge
relations [Coe et al., 2002; Decharme et al., 2008]. Some
studies have tried to close the water budget at basin scale or
estimate discharge from the water balance equation and have
reported large uncertainties in the estimated discharge due to
the errors in the individual components of the water budget
[Coe et al., 2002; Getirana et al., 2010; Marengo, 2005;
Sheffield et al., 2009; Syed et al., 2009, 2005; Tang et al.,
2010; Zeng, 1999]. Because of the need to calibrate hydro-
logical models to specific locations and their relatively low
spatial resolution (global or continental or large basin scales),
applying these models to the Amazon basin with complicated
rainfall and evapotranspiration variability is not always
accurate [Getirana et al., 2010].
[5] There are different studies on quantifying the water

budget components, each trying different methodologies.
However, they give different estimates that make the accu-
rate estimate of these components difficult and that will be
discussed here.
[6] Gauge‐based estimates of global and continental

freshwater discharge are limited by geographic and political
restrictions due to institutional and economic constraints.
Existing regional networks are usually located in more
affluent countries. Quantifying freshwater discharge into the
ocean is further complicated by the fact that existing stream
gauges are often located far from the point of inflow into the
ocean [Dai and Trenberth, 2002]. Also because of techno-
logical, economical and institutional limitations, the number
of gauging stations and access to river discharge information
have been declining since 1980 [Bjerklie et al., 2003]. Even
though discharge is an accurate measure of integrated ter-
restrial runoff, it typically offers little information about the
spatial distribution of runoff within a watershed unless the
river basins are highly instrumented. Therefore, disaggre-
gation of the river runoff is necessary when spatially dis-
tributed runoff information is needed especially in large and
complex basins like Amazon [Fekete et al., 2002].
[7] The surface and upper‐air observational network in the

Amazon region is very sparse and, by itself, cannot provide
the comprehensive meteorological information needed to
accurately drive numerical models to estimate water‐balance.
Therefore, imperfect models or products from data assimi-

lation or gridded reanalyses and rainfall data sets have been
used to make these estimates [Marengo, 2005]. The National
Centers for Environmental Prediction (NCEP), European
Centre for Medium Range Weather Forecasts (ECMWF)
and National Aeronautics and Space Administration/Data
Assimilation Office (NASA/DAO), NASA/Goddard Earth
Observation System (GEOS) have developed analysis pro-
jects using different global atmospheric models with land‐
surface physics and data assimilation to characterize features
of the terrestrial water budget. However, the level of uncer-
tainty in these estimates of the components of the water
budget is not yet well determined [Marengo, 2005; Roads
et al., 2002].
[8] The spatiotemporal variations of precipitation globally

and over the Amazon basin have been analyzed in several
studies using remote sensing techniques [Gu et al., 2007;
Huffman et al., 2009, 2007; Joyce et al., 2004], rain gauge
based measurements [Espinoza Villar et al., 2009a, 2009b],
a combination of these methods and from climatology.
Although the satellite‐based estimates are not able to capture
the extreme rainfall rates reliably [AghaKouchak et al.,
2011a, 2011b] they can be used to study the seasonal vari-
ability of precipitation. [Espinoza Villar et al., 2009a, 2009b]
investigated the seasonal and interannual variations of rainfall
over different parts of the basin using rain gauge measure-
ments and reported a clear contrast in the annual phase
between northern and southern regions in austral summer
(December–January–February, DJF) and austral winter
(June–July–Aug, JJA), as well as a systematic decrease of
mean rainfall rate since 1983 at −0.32% per decade.
[9] Evapotranspiration is estimated from reanalysis models

including NCEP‐DOEAMIP‐II reanalysis (R‐2) [Kanamitsu
et al., 2002], European Centre for Medium‐Range Forecasts
(ECMWF), ERA‐40 [Gibson et al., 1997], from the empirical
Penman‐Monteith formulation [Monteith, 1965] using dif-
ferent remote sensing data to quantify net surface radiation
and surface meteorology inputs [Mu et al., 2007; Sheffield
et al., 2010], using model simulations with radiation and
meteorological forcing, or employing a water balance
residual approach (P‐R‐DS) [Rodell et al., 2004; Sheffield
et al., 2010]. [Jimenez et al., 2011] compared twelve dif-
ferent global evapotranspiration estimates and showed that
the largest absolute disagreements occur over tropical rain
forest regions. These differences may be due to difference in
inputs to the estimates, such as the net radiation, vegetation
and meteorological data, or to differences in physics,
including whether evaporation from intercepted precipitation
or open water on the surface is accounted for.
[10] The total terrestrial water storage is the sum of the

amounts of snow, soil moisture, surface and sub‐surface
water; changes in storage can now be estimated using the
Gravity Recovery and Climate Experiment (GRACE) mea-
surements [Wahr et al., 2004]. Discharge or surface water
volume changes have been estimated using altimetry data
and height‐volume ratios [Alsdorf et al., 2007; Alsdorf,
2003; Alsdorf and Lettenmaier, 2003; Frappart et al.,
2008], surface water areas using multisatellite techniques
[Papa et al., 2008b, 2010; Prigent et al., 2007] and “direct”
gauge measurements [Espinoza Villar et al., 2009a, 2009b].
[11] This study aims to investigate seasonal and inter‐

annual variations of the individual water balance (WB)
components and their interactions. For this we investigate
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the use of different satellite data products over the Amazon,
including estimates of precipitation, evapotranspiration,
together with water storage changes, to infer the runoff term
as a residual from the water balance equation. Results are
compared and evaluated with in situ discharge measure-
ments. In order to better understand the dynamics of each
component and their interactions, the Amazon basin is
studied as a whole and also divided into smaller sub‐basins
(SBs) to determine the most consistent combination of data
products for quantifying the seasonal and interannual varia-
tions of water budget components in all individual SBs. The
best data combination is selected based on the best consis-
tency in representing the spatial and temporal variability of
estimated runoff compared to observed runoff. The dynamics
of the water budget components and their interactions are
then investigated at inter‐basin and seasonal scales.
[12] Section 2 defines the study area and the different data

sets that are used. The spatiotemporal variability over the

SBs from each data product is described. Section 3 presents
estimates of the runoff as a residual from the water balance
equation for different precipitation and evapotranspiration
data combinations along with an indication of their uncer-
tainties. Section 4 explains the choice of the most consistent
data combination from the results of Section 3 by compar-
ison of the estimated and observed runoff for the SBs. The
best precipitation and evapotranspiration data combination
is the Global Precipitation Climatology Project (GPCP)
precipitation and the evaporation estimates of the University
of Montana. The agreement between satellite based and in
situ runoff is significantly improved by using satellite based
inundation extent verifications to estimate lag‐times between
SBs. Section 5 uses this data combination to characterize the
seasonal and inter‐annual dynamics of the water budget
components and their interactions; especially the interactions
among the SBs. Finally, Section 6 gives the summary and
conclusions.

2. The Amazon Basin and Its SBs: Data Sets
and Analysis of the Different Products

2.1. Region of Interest

[13] The Amazon is the world’s largest drainage system
with a total area of 6 × 106 km2 carrying 15–20% of the
global fresh water to the ocean [Richey et al., 1986]. Due to
its size and its position astride the Equator, the Amazon
basin exhibits very complicated rainfall, evapotranspiration
and runoff patterns; within its boundaries, the interactions of
its many SBs make it a very interesting dynamic system.
[14] In this study we consider the entire Amazon basin as

well as 15 SBs (Figure 1). We selected these 15 SBs based
on a careful analysis of the availability of in situ stations
(at the outlet of each SB) that give their daily discharge
data, their location in the basin, data periods, drainage area
and mean discharge (Figure 1 and Table 1). These SBs
show drainage areas ranging from 117,000 km2 (SB 1) to
761,500 km2 (SB 2, Table 1). Following [Espinoza Villar
et al., 2009a, 2009b] the geographic extents of the main
basin and SBs were estimated using ArcGIS and the Shuttle
Radar Topography Mission (SRTM) Digital Elevation
Model [Rabus et al., 2003] with a resolution of 3 arc sec
and checks with SBs generated by the Environmental
Research Observatory (ORE) Geodynamical, hydrological

Figure 1. Delineation of the Amazon and its SBs at differ-
ent gauges using SRTM topography data.

Table 1. Situation, Mean (Qmean), Minimum (Qmin) and Maximum (Qmax) Runoff of SBs (mm/d)

Basin Number Station River Lat Lon Area (km2) Qmean Qmax Qmin

1 Borja Maranon −4.43 −77.6 117000 3.65 6.28 1.79
2 Tabatinga Amazonas −4.25 −69.93 745300 3.39 5.33 1.24
3 St‐Antonio Do Ica Solimoes −3.08 −67.93 263000 6.83 11.46 1.93
4 Acanaui Japura −1.82 −66.6 251500 4.79 8.31 1.47
5 Serrinha Negro −0.48 −64.83 287200 5.06 9.29 1.32
6 Caracarai Branco 1.83 −61.38 134200 2.14 7.04 0.21
7 Labrea Purus −7.25 −64.8 165000 2.07 4.16 0.31
7 Gaviao Jurua −4.84 −66.85 258000 1.14 2.74 0.2
8 Guayaramerin Mamore −10.8 −65.3 512300 1.68 4.19 0.02
9 Porte Velho Madeira −8.74 −63.92 490100 2.59 6.72 −0.17
10 Fazenda Vista Alegre Madeira −4.68 −60.03 312900 4.37 7.79 0.2
11 Manacapuru Sloimoes −3.31 −60.61 435600 2.88 7.31 −0.87
12 Obidos Amazon −1.93 −55.5 706600 2.38 5.57 0.45
13 Itaituba Tapajos −4.28 −55.58 441000 1.54 5.12 0.18
14 Altamira Xingu −3.38 −52.14 474800 3.02 6.28 1.79
15 Outlet Amazon 415000

AZARDERAKHSH ET AL.: WATER DYNAMICS IN AMAZON BASIN D24107D24107

3 of 18



and biogeochemical control of erosion/alteration and mate-
rial transport in the Amazon basin (HYBAM) Program
(http://www.ore‐hybam.org).
[15] SB 1 is located at the westernmost (upstream) end of

the Amazon system and includes part of Andes mountains
with very large rainfall variability. SBs 2 and 3 also include
part of the Andes in the northwestern part of the Amazon
and contain the upper portions of the Amazonas and Sali-
moes rivers. SBs 4, 5 and 6 carry water into the Japuru,
Negro and Branco rivers in the northern part of the Amazon
and make the largest contribution of water to total flow
despite their smaller area. SB 7 is composed of two smaller
rivers, the Purus and Jurua, in the midwestern part of the
Amazon and both flow into SB 11, the Solimoes River. SB
8, the Mamore River, is in the southern part of the Amazon
flowing into SB 9 and eventually 10, the Madeira River.
SBs 11, Solimoes, and 12, the Amazon River proper, are in
the rain forest part of the Amazon with the largest inundated
areas. SB 13, the Tapajos River, and 14, the Xingu River,
are in the eastern part of the Amazon and have lower rainfall
variability but larger drainage areas.

2.2. Data Sets and Analysis of the Inputs

2.2.1. Topography
[16] The Shuttle Radar Topography Mission (SRTM)

Digital Elevation Model (DEM) [Rabus et al., 2003] data
are used to delineate the geographic extents of the main
basin and its SBs (Figure 1). This information with a reso-
lution of 3 arc sec is used in Arc‐GIS to generate watershed
boundaries for each runoff gauge and to compute the basin
slope and drainage area. Since topography data do not
include information from the bottom of the river channel, it
is necessary to add river network information to precisely
locate the outlet of the SB for each gauge station. The river
network data is used from the ORE‐HYBAM program as
ancillary data to generate the watersheds.
2.2.2. Precipitation
[17] We used in this study different estimates of precipi-

tation over the Amazon basin.
[18] 1. The Global Precipitation Climatology Project

(GPCP), established in 1986 by the World Climate Research
Program, provides data that quantify the distribution of
precipitation over the whole globe [Adler et al., 2003]. The
GPCP version 2.1, which is a combined satellite‐gauge
(SG) product, provides monthly and pentad, global 2.5° ×
2.5° gridded values of precipitation totals from 1979‐ present
[Huffman et al., 2009].
[19] 2. The TRMM MultiSatellite Precipitation Analysis

(TMPA) [Huffman et al., 2007] is a 3‐hourly (also monthly)
combined microwave‐IR global 0.25° by 0.25° estimate
(with gauge adjustment) starting in January 1998. We used
the combined gauge‐adjusted product (3B42 version 6),
which is scaled to monthly gauge data.
[20] 3. The Climate Prediction Center (CPC) Morphing

Technique (CMORPH) uses motion vectors derived from
half‐hourly 8 km (at the equator) geostationary satellite IR
imagery to propagate the precipitation estimates derived
from passive microwave data and produces a 3‐hourly
0.25‐degree product available back to December 2002
[Joyce et al., 2004].
[21] 4. The Precipitation Estimation from Remotely

Sensed Information using Artificial Neural Networks

(PERSIANN) gives 0.25° by 0.25° 3‐hourly global rainfall
estimates using infrared satellite imagery and surface
information since 2000 [Hsu et al., 1997].
[22] Comparison of the different precipitation products

and their mean seasonal variations for 2003–2006 is shown
for 9 representative SBs, 2, 3, 5, 7, 8, 10, 11, 12 and 14 in
Figure 2. Annual mean precipitation reported by these
products for the entire Amazon ranges from 5.5 mm/d
(TMPA) to 6.52 mm/d (PERSIANN). Spatial patterns of
different satellite precipitation data sets are significantly
different as previously highlighted [AghaKouchak et al.,
2011b]. This could have a considerable impact on the esti-
mated runoff in this study in different SBs.
[23] The primary and calibration sensors of GPCP and

TMPA are similar and as a result they show good agreement
over space and time except for the SB 1, probably because the
TMPA results are adjusted to the older gauge measurements
of the older GPCP data (Version 1). Generally, these two
gauge adjusted products give smaller estimates in wet sea-
sons compared to CMORPH and PERSIANN, which have
precipitation greater than 3.3 mm/d, (nonshaded areas in
Figure 2). However, these differences are reversed in SBs 1,
3, and 6 during dry or less rainy seasons (not shown). Another
difference in seasonal cycle of the precipitation products is
onset of the wet season; PERSIANN and CMORPH start in
SB 5, 11 and 12 from August while climatology records and
GPCP and TMPA estimates start the wet season with one or
two months delay. Note that the shaded area means local dry
season with total monthly precipitation less that 3.3 mm/d
using GPCP data since it gives closest estimates to GPCC and
climatology records.
2.2.3. Evapotranspiration
[24] We use and evaluate two ET estimates that are based

on the Penman‐Monteith equation [Monteith, 1965] using
different remote sensing data as inputs. The goal is to use
sub‐monthly data, coincident with GRACE estimates.
Therefore these two estimates are chosen for this study from
among other remote sensing based estimates [Fisher et al.,
2008; Wang et al., 2010; Zhang et al., 2010]: the Prince-
ton University and University of Montana products and
will be referred as ET‐PRI and ET‐MON (M for Mu and
Z for Zhang).
[25] [Sheffield et al., 2010] calculated daily estimates of

ET‐PRI with input radiation andmeteorological data from the
International Satellite Cloud Climatology Project (ISCCP)
and vegetation distribution derived from the Advanced Very
High Resolution Radiometer (AVHRR) products for 1984–
2006 at 2.5 deg.
[26] The other data set, ET‐MON‐M, uses the same

algorithm with different input data and gives global 8‐day,
0.05‐degree, estimates over 2000–2006 [Mu et al., 2007].
The Beta version ET algorithm is driven with global 1 km
MODIS LAI/FPAR (Leaf Area Index/Flux Photosynthetic,
Version 5), MODIS land cover (Version 4), 0.05‐degree
global MODIS surface albedo (Version 4), and Global
Modeling and Assimilation Office (GMAO) daily meteo-
rological data. In this study, we have used their global 1 km
ET/LE data from 2002 August to 2006.
[27] We also use the monthly evapotranspiration estimates

provided by University of Montana, ET‐MON‐Z, to study
inter‐annual variations of ET over the Amazon (Section 5)
[Zhang et al., 2010]. The algorithm quantifies canopy
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transpiration and soil evaporation using a modified Penman‐
Monteith approach with biome‐specific canopy conductance
determined from the normalized difference vegetation index
(NDVI) and quantifies open water evaporation using a
Priestley‐Taylor approach. These algorithms were applied
globally using advanced very high resolution radiometer
(AVHRR) Global Inventory Modeling and Mapping Studies
(GIMMS) normalized difference vegetation index (NDVI)
data, NCEP/NCAR Reanalysis (NNR) daily surface mete-
orology, and NASA/GEWEX Surface Radiation Budget
Release 3.0 solar radiation inputs. This data set gives very
similar values to ET‐MON‐M with RMS differences of up
to 0.4 mm/d (RMS differences with ET‐PRI is 1.03 mm/d).
Therefore this ET‐MON‐Z and ET‐PRI will be used for
the interannual variations over a longer time period (1984–
2006) (Section 5).
[28] Comparison of the three data sets (ET‐MON‐M, ET‐

Mon‐Z, ET‐PRI) is shown in Figure 3 for different SBs
with their dry season shown by the shaded area. Both
University of Montana products agree better with each other
over different SBs than ET‐PRI. The differences between
ET‐MON‐M and ET‐PRI vary among the SBs: 1 mm/d
maximum mean difference (bias) between the two data sets
is seen in the northern SB 6 and the 0.15 mm/d minimum
difference is seen in southern SB 8. [Getirana et al., 2010]
used hydrological modeling and water balance for the Negro
river (SB 5 and 6) for 1997–2006 to estimate annual mean,

wet and dry season mean ET of 3.2, 3.5 and 2.6 mm/d
respectively. The same values for ET‐MON‐M are 3.23,
4.1 and 2.42 mm/d and for ET‐PRI they are 4.32, 5.2 and
3.33 mm/d. Note that neither data set accounts for evapora-
tion from inundated areas even though SBs 11 and 12 have
extensive and variable inundated areas [Papa et al., 2008b,
2010].
[29] Open water bodies and flooded areas in the Amazon

can be important contributors to ET. Evapotranspiration
estimates from Princeton University, with a map grid of
2.5 degrees, are less sensitive to the inundated areas near the
river. On the other hand ET‐MON‐Z, have finer resolution
(1 km), but do not account for evaporation from flooded
areas. These estimates for open water bodies are based on
land cover classification maps and, therefore, do not include
the effects of seasonal flooding [Papa et al., 2010]. In fact,
this data set shows a decrease in ET in the season with
increased flooding. Also, there does not seem to be a sig-
nificant increase in ET in SB 8, which contains the reservoir
of the Samuel Dam. Therefore, all three ET estimates need to
carefully account for the evaporation from open water areas.
[30] Generally ET exhibits small seasonal variation and

decreases over the dry season due to water stress. However,
ET increases during less rainy months in SBs 5, 11, 12, and
15 which have no dry season. This will be discussed more in
section 5 investigating the dynamics of the water.

Figure 2. Seasonal variability of precipitation from different data sets for different SBs with dry seasons
(P of GPCP < 3.3 mm/d) shown with shaded areas. For more information on SBs see Table 1.

AZARDERAKHSH ET AL.: WATER DYNAMICS IN AMAZON BASIN D24107D24107

5 of 18



[31] Thus for the study of the seasonal dynamics we use
ET‐MON‐M and for the inter‐annual variation we use ET‐
MON‐Z and ET‐PRI because of their long time coverage.
Although these ET estimates show different seasonal pat-
terns over the Amazon, they agree in interannual variation
exhibiting correlation coefficient of 0.98 between ET‐
MON‐M and ET‐MON‐Z and 0.91 between ET‐MON‐M
and ET‐PRI.
2.2.4. Total Water Storage (TWS) Anomalies
From GRACE
[32] The GRACE mission provides monthly gravity field

solutions as sets of Stokes coefficients up to 1 degree at
approximately 30‐day intervals by measuring the distance
between the two satellites since its launch in 2002. These
coefficients can be used to estimate TWS changes after
correction for atmospheric mass changes. We use these
monthly solutions for the period from August 2002 through
December 2006, except for June 2003 and January 2004
when GRACE data were unavailable.
[33] Since shorter‐wavelength spherical harmonic coeffi-

cients of the gravity field have more spatial noise, smoothing
is necessary to reduce it [Seo andWilson, 2005].While a large
half‐width can reduce the amplitude of the storage change
signal, a smaller half‐width can significantly decrease the
signal‐to‐noise ratio and may even produce non‐geophysical
north‐south stripes [Swenson and Wahr, 2006]. The geoid

data are expressed in equivalent water height the assumption
that observed gravity variations are caused by surface mass
redistribution over land [Wahr et al., 2004].
[34] We consider two smoothing widths to compare the

signal difference in the storage changes at scales of 300 km
and 500 km from the Jet Propulsion Laboratory (JPL) and
Center for space research (CSR). Figure 4 shows monthly
variation of the TWS obtained with these two smoothing
radii for different SBs. The 500 km radius smoothes the
storage changes but appears to lose some of the information
as [Swenson and Wahr, 2006] concluded especially in
downstream SBs 11 and 12. Also, the seasonal variations of
the water storage changes are in better agreement with the
known dry and wet seasons of the SBs except in SB 12,
where the minimum occurs in the beginning of the dry sea-
son (shaded areas in Figure 4). This happens because of the
coincidence of the dry season, and hence decreased runoff,
from the upstream SBs discharging into this SB (5 and 11).
[35] While the analysis of the GRACE measurements can

characterize terrestrial freshwater changes across a range of
temporal (monthly and longer) and spatial scales (area
>150,000 km2, the lower limit of GRACE water storage
detectability) [Rodell and Famiglietti, 1999], it cannot
resolve important features of the distribution of terrestrial
surface waters at higher spatiotemporal frequencies. In
smaller SBs it is expected that GRACE substantially

Figure 3. Seasonal variability of evaporation from different data sets for different SBs with dry seasons
(P < 3.3 mm/d) shown with shaded areas. For more information on SBs see Table 1.
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underestimates the seasonal cycle of terrestrial water storage
because of attenuation by the spatial smoothing [Chen et al.,
2007]. This was also seen in a study for the smaller
Sacramento‐Klamath basins with total area of 110,000 km2

[Tang et al., 2010]. In the Amazon most of the SBs have
total areas >2 × 105 (km2), except SB 1 which has an area of
117,000 km2.
2.2.5. Discharge
[36] Daily water discharge data are obtained from 14 gauge

stations from ORE‐HYBAM program. Discharge for the
downstream SBs (9, 10, 11 and 12) is computed as a residual
of the total discharge of the downstream SB and the incoming
discharge from upstream SBs. These values are then divided
by SB area and lagged one month, as a first estimate, to be
consistent with the timing of the other components of the
water balance equation following [Sheffield et al., 2009] in
their study for Mississippi basin.
[37] Precipitation, evapotranspiration and water storage

changes are averaged over each SB area. Because the
observed runoff data are the total discharge at the mouth of
each SB, net runoff from in‐SB sources was computed as
downstream minus upstream runoff. Therefore, the net
runoff from SB 2 is that measured at Station 2 minus runoff
from SB 1 and the net runoff from SB 3 is the total runoff
from SB 3 minus that from SB 2. SB 9 obtains runoff from
SB 8 and then discharges into SB 10. SB 11 collects water
from SBs 3, 4 and 7 while SB 12 discharges most of its
water from SBs 5, 6, 10, and 11. As seen in the Table 1 the
minimum streamflow occurs in the easternmost SB 13 with
a mean of 1.84 mm/d and the maximum occurs in the

western SB 3 with a mean of 6.83 mm/d. We aim to
investigate daily variability of the water budget components,
but the coarse time resolution of GRACE data limits our
initial study to monthly mean data that are used to investi-
gate seasonal variations. Once the best precipitation and
evapotranspiration combination is selected, their daily
information can be used to study the water dynamics in
more detail.
[38] The seasonal variation of the observed runoff is

plotted in Figure 5 for different SBs along with the esti-
mated runoff estimated runoff from water balance (the
comparison of two will be discussed in section 4). Monthly
variation of the observed runoff depends more on P, which
has larger seasonal amplitude, than ET for most of the SBs.
However, in the downstream SBs 11 and 12, net runoff has
smaller seasonality because P‐ET and TWS have opposite
phase indicative of opposite seasonal phases for upstream
SBs. SB 11 has maximum runoff in its local dry season
because of abundance of stored water from upstream SBs.
2.2.6. Multisatellite Derived Inundation Data Sets
[39] A global data set of inundated area, covering the

period 1993–2008, is derived by a multisatellite analysis
method employing passive microwave land surface emis-
sivities calculated from Special Sensor Microwave Imager
(SSM/I) and International Satellite Cloud Climatology
Project (ISCCP) observations, (ERS scatterometer mea-
surements and AVHRR visible and near‐infrared reflec-
tances [Papa et al., 2010; Prigent et al., 2007]. The data set
reports monthly inundated area fraction for each equal area
grid cell (0.25° × 0.25° at the equator) accounting for

Figure 4. Seasonal variability of the water storage changes in different SBswith dry seasons (P < 3.3 mm/d)
shown with shaded areas. For more information on SBs see Table 1.
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vegetation effects on the passive microwave signal of open
water. The data set has been used to estimate surface water
storage variations in large river basins [Frappart et al.,
2008, 2010] or as an indicator of runoff variation similar
to the water height at the gauge station [Papa et al., 2008a,
2008b]. We evaluate its ability to indicate the temporal
variation of runoff to infer lag times between excess rainfall
and integrated runoff at the mouth of each SB and then to
the mouth of the whole Amazon.
[40] Figure 6a shows a map of the maximum annual

inundation percentage difference of each map cell. Maxi-
mum inundated areas appear in the downstream SBs 11, 12
and 15 and the southern upstream SB 8. Large inundation
fractions in the latter SB are due to the storage of the water
in the river upstream of the Samuel dam located at the
mouth of this SB.
[41] As expected from several previous studies cited

above in different environments, the temporal variation of
inundation exhibits a close correlation with runoff variations
as illustrated here for nine representative SBs in Figure 6b.
These time series will be used in Section 4 to compute the
delay time for the water in upstream SBs to reach to the
downstream SB instead of simply lagging one month for
the whole Amazon. As seen in Figure 6b, the correlation
coefficient between the time series of accumulated discharge
at the outlet of each SB and its inundated fraction varies from
0.69 to 0.92, which indicates the ability of this data to detect
the seasonal variation of surface water discharge.
[42] Comparing all the components shows that, generally,

P is greater than ET over the whole Amazon basin, as

previously deduced; but that ET exceeds P in the dry season
in SBs 5, 8, 9, 10, 11 and 12. In SB 1, P is less than R,
which probably indicates errors in the precipitation esti-
mates as discussed previously. The water balance approach
helps evaluate different combination of data sets for the
water budget components and to understand their dynamics
in Amazon basin as will be discussed in the next section.

3. Analysis Method: Estimates of Runoff and
Uncertainties

[43] The terrestrial water balance for a drainage area can
be written as

P� ET�DS ¼ R ð1Þ
[44] Where DS is the changes in terrestrial water storage

(TWS) from GRACE as the difference between one monthly
observation and the previous observation, P is the total
precipitation (mm) for the observation month, ET is the
evapotranspiration (mm) for that month, and R is the net
discharge from the basin. In conventional hydrological
models, the net runoff from equation (1) is estimated based
on the storage in soil and groundwater, but not surface
water, and then is routed in the second stage using river
characteristics for the surface storage term. But GRACE
data represent total water storage including the surface
water. Therefore, using GRACE‐based estimates of DS in
equation (1) to determine runoff requires estimation of the
travel time of the water from to the mouth of a basin.

Figure 5. Monthly variation of observed runoff (solid line) and estimated using two smoothing radii for
TWSC of GRACE (dashed lines) in different SBs. For more information on SBs see Table 1.
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[45] A better estimate of the discharge of the whole, very
large Amazon basin is obtained by dividing it into smaller
SBs that have smaller lag times and comparing the estimates
to the observed discharge time series (hydrograph). The

surface inundation data set is then used in each SB to
compute the lag time between estimated runoff and the time
series of the inundation percentage at the location of the
gauge by a simple lag correlation. Then the lagged discharge

Figure 6. (a) Annual range of gridded inundation fraction (max‐min) for 2003–2006. (b) Time series of
inundation percentage and gauge runoff at location of gauges. Correlation coefficient for each SB is
shown in each plot by r.
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is compared to the gauge observations for each SB. The
computed lag–time for the smaller upstream SBs, 1, 3, 4,
and 6, is zero months, while for the SBs 2, 5, 7, 8 and 11–
14, it is one month. The lag‐time for SBs 9 and 10 is also
less than a month. Therefore accumulated delay time for the
water from SBs 3 and 4 to reach mouth of the SB 12 is three
months. The summed and lagged estimated total runoff will
be explained more in Section 4.
[46] The relative uncertainty in a monthly estimates of R,

uR, can be estimated as the root mean square of the errors of
each component divided by the value of R, assuming that
the errors of the separate components are independent.

�R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
P
P
2 þ �2

ET
ET

2 þ �2
DS

DS
2

q

P � ET �DS
ð2Þ

[47] Given uR, the relative error for R, the 95% confi-
dence limits on R are ±uRR.Wahr et al. [2004] estimated the
GRACE uncertainties to about 1.0–1.5 cm for the Amazon
basin. Therefore, the absolute error of the water storage
changes between two observation months would be at leastffiffiffi
2

p
times the of the one observation error (0.47–0.70 mm/d).

[48] The spatiotemporal variability of the absolute error
for GPCP data is presented by Huffman et al. [2009]. The
average error, uPP, over the whole Amazon basin is 0.94
mm/d that ranges from 0.49 mm/d in SB 1 to 1.19 mm/d in
SB 5. Note that the uncertainties for this product increases
for the larger precipitation values. The uncertainties of other
precipitation products are not available over South America
at this time.
[49] Mean Absolute Error (MAE) of ET reported by Mu

et al. [2007] is 0.33 mm/d in their improved version based
on the evaluation at eddy flux towers. Jimenez et al. [2011]
compared ET estimates of satellite based, re‐analysis and
other empirical methods globally and reported the largest
absolute differences in monthly mean latent heat flux values
over tropical regions; the maximum difference in Amazon
SB is 24 W/m2 (0.85 mm/d). Therefore, the assumption of
ET uncertainty needs more evaluation. Note that the accu-
racy of the discharge measurements is not given from ORE‐
Hybam. However, analysis of the potential errors in river
discharge measurements suggests that 5–10% is a reason-
able estimation of the error in observed mean discharge
[Coe et al., 2002], which translates into 0.15–0.3 mm/day.
[50] The assumption of independent errors of each com-

ponent needs a more careful investigation because derived
ET estimates might depend on P estimates. In this step, only
uncertainties of GPCP are available, and therefore will be
used to compute the resultant uncertainties of the estimated

runoff from equation (2) for this combination for all 14 SBs.
Also note that the given equation (2) can only be used for
the data with Gaussian distribution. Although P does not
have Gaussian distribution, this formula can be used as a
rough estimate about the uncertainty expecting even larger
values dues to sever events.

4. Results

4.1. Estimates of Runoff and Choice of the Most
Consistent Data Combination

[51] There are four P and three ET data sets available for
this study, which produce different estimates of R (DS is
taken only from GRACE). Table 2 shows the relative error,
the total estimated error divided by the observed runoff
values, Bias and RMSE of the estimated and observed
runoff from different combinations of data over the whole
Amazon. These error values are computed with different lag
times: two months lag gives the maximum correlation (Min
error) for most of the cases. Both TMPA and GPCP com-
bined with ET‐MON‐M have smaller relative error com-
pared to the observed value of 15 and 23%. Therefore ET‐
MON‐M produces slightly smaller total error with two pairs
of P than ET‐PRI. On the other hand, PERSIANN based
estimates produces larger error with both ET combinations
and therefore is not used in the next.
[52] The estimated absolute error is 1 to 1.45 mm/d for the

other three P pairs for the whole Amazon. To show more
detail, the Bias and RMSE are computed at SB scale and
shown in Table 3 for three P products. Since the annual
variation of the TWS is small, we computed annual P‐ET‐R
to obtain the bias and then removed it to compute the
RMSE. This comparison shows where in the large Amazon
basin, the estimated runoff works better and vice versa for
each combination. The GPCP combination gives smaller
RMSE in most of the SBs. In northern SBs 2–5 and SBs 11–
12, RMSE shows large variation among three P combina-
tions. Although the relative error shown in Table 2 is small
(15% for GPCP, ET‐MONM combination) for the whole
Amazon, it is greater in smaller SBs especially in SBs 1,6,8
and 14 it increases as high as 128%.
[53] A dam controls the flow in SB 8 and therefore its

storage changes differ from the natural rivers. This shows
that one should be careful about using the smoother data
because of loss of information that is a different effect than
the attenuation effect investigated previously [Chen et al.,
2007]. While estimated runoff is in good agreement in
amplitude and seasonal phase with observed runoff for all
the SBs, except SB 3 (Figure 5), there is a phase lag and
amplitude difference between the observed and estimated
runoff for the entire Amazon basin, even for the combina-
tion with the best average agreement. This phase lag can
arise because the satellite estimated runoff is averaged over
the SB whereas the observed runoff represents integration at
the mouth of the whole basin. Performing the same com-
parison in the smaller SBs supports this hypothesis: the
results show much better agreement in phase and amplitude
in all cases (Table 3). Mean absolute errors for each SB from
both P‐ET combinations are shown in Table 4 along with
the estimated uncertainties. Comparison of the uncertainties
and MAE (mean absolute error) in Table 4 shows that the
errors are not always within the uncertainties for all of the

Table 2. Relative, Bias, and RMS Error of Estimated Runoff
From Different Data Combinations for the Whole Amazon SB

Data Combination Relative (%) Bias (mm/d) RMSE (mm/d)

TMPA‐PRI 48 −1.40 0.7
PERSIANN‐PRI 60 −0.49 2.1
GPCP‐PRI 31 −0.89 0.7
CMORPH‐PRI 41 −1.18 1.2
TMPA‐MON 23 −0.65 0.6
PERSIANN‐MON 63 0.27 2.2
GPCP‐MON 15 −0.43 0.60
CMORPH‐MON 30 −0.40 1.1
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SBs; but are very close to these values except for the large
differences in SB 1 and 3. This could be due to major
limitations of satellite data sets over mountainous regions,
highlighted in [Sorooshian et al., 2011] but also is seen in
other in situ based studies below.
[54] Coe et al. [2002] used the IBIS ecosystem model,

together with the HYDRA surface hydrology model, to
simulate the Amazon Basin flooded area and discharge from
historical climate records from 1939 to 1998. Evaluation of
their results against diverse observations indicates that esti-
mates of precipitation are likely greatly underestimated out-
side of the Brazilian portion of the Amazon Basin. As a result,
flooded area and discharge and are consistently under-
estimated for watersheds with significant input from non‐
Brazilian portions of the basin [Coe et al., 2002]. Costa and
Foley [1997] found a similar negative bias in their simu-
lated discharge of the Andes SBs and concluded that esti-
mations of the runoff for Andes SBs were unusually low
compared to those inside Brazil and suggested that this large
negative bias is likely associated with errors in the precipi-
tation data set outside Brazil rather than with the calculation
of evapotranspiration. Also some other studies of rainfall
variability in theAmazon basin using a large number of rainfall
gauges showed that rainfall decreases at higher altitudes in the
Andes [Espinoza Villar et al., 2009a, 2009b]. GPCP V2.1 and
TRMM3B42 data are adjusted to monthly gauge data (but
different versions), but this adjustment does not increase sig-
nificantly the microwave‐based estimates in SB 1. Although
GPCP version 2.1 has larger rainfall estimates in the Andes
than the previous version [Huffman et al., 2009], there is still a
large difference between incoming and outgoing components
of the water balance. Even CMORPH and PERSIANN data,
which rely solely on satellite measurements and over‐estimate
rainfall in other parts of the Amazon, give smaller estimates
than GPCP in the Andes.
[55] To evaluate the evapotranspiration data, we note that

the net radiation used to produce the ET‐PRI is generally
larger over rain forest areas than that used to produce other
remote sensing‐based ET data sets [Jimenez et al., 2011].
Since radiation is the most important term in the Penman‐
Monteith formula, this difference can explain the larger ET
values obtained for the Amazon. As seen in Table 3, after
removing bias from the estimates, RMSE values are gen-

erally smaller in ET‐MON‐M based combinations except in
SBs 4, 5, 6, 8 and 11 where it is the same for both ET
estimates. ET‐MON‐M is chosen for further study of the
dynamics since there is no objective basis for removing the
bias from ET‐PRI.

4.2. Estimated Runoff Using Lagging Method

[56] As mentioned in the comparison of the estimated and
observed seasonal variations of runoff, there are magnitude
differences and a phase lag between the two estimates for
the whole Amazon basin (at the downstream station) but not
in the smaller SBs. Therefore, the method used in the
smaller SBs to shift the observed runoff is applied at this
stage to estimate the total runoff at the mouth of the whole
Amazon similar to an element‐to‐element routing method.
The estimated runoff downstream is the sum of the runoff
from each upstream SB with a lag time computed from the
lag correlation analysis between inundation data and esti-
mated runoff. These correlation computations are used to
determine the accumulated flow into SBs 10 and 3, then into
SB 11 and finally into SB 12. The lag times from each

Table 4. Mean Absolute Error of the Estimated Runoff From Two
Different P and ET Combinations and Estimated Uncertainty of the
GPCP and ET‐MON‐M Data for Different SBs

SB

GPCP, ET‐MON‐M CMORPH,
ET‐PRI

Mean Absolute
Error (mm/d)

Estimated Total
Uncertainties (mm/d)

Mean Absolute
Error (mm/d)

1 0.78 3.03 4.12
2 1.11 1.00 2.14
3 1.26 2.14 3.98
4 1.31 1.38 2.79
5 1.34 1.27 2.89
6 1.07 1.37 2.27
7 1.16 1.33 2.36
8 0.95 0.90 1.13
9 1.03 0.86 1.24
10 1.12 1.28 2.20
11 1.23 1.74 2.83
12 1.17 1.63 2.25
13 1.15 1.03 1.57
14 1.12 1.69 2.18
Whole 1.03 1.37 1.75

Table 3. Bias and RMSE of the Estimated Runoff From Different P, and ET Data in Different SBs of Amazon (mm/d)a

SBs

GPCP,
ET‐MON‐M GPCP, ET‐PRI

CMORPH,
ET‐MON‐M

CMORPH,
ET‐PRI

TMPA,
ET‐MON‐M TMPA, ET‐PRI

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 −3.2 1.1 −4.0 1.1 −3.6 1.4 −4.4 1.4 −4.4 1.3 −5.2 1.3
2 −1.1 0.6 −1.3 0.8 −0.8 1.5 −1.0 1.5 −2.1 0.9 −2.3 1.1
3 −2.1 1.3 −2.9 1.5 −0.8 2.6 −1.6 2.6 −2.4 1.5 −3.2 1.7
4 0.0 1.1 −0.8 1.1 1.2 2.1 0.4 2.1 −0.4 1.8 −1.1 1.8
5 0.2 1.2 −0.9 1.2 1.9 2.2 0.8 2.3 −0.4 1.8 −1.5 1.7
6 0.9 0.9 −0.3 0.9 0.2 1.3 −1.0 1.2 −0.3 1.1 −1.4 1.0
7 −0.1 0.7 −0.7 1.0 1.2 1.7 0.6 1.8 −0.7 0.9 −1.3 1.0
8 −0.4 0.8 −0.5 0.8 0.4 1.2 0.3 1.2 −0.7 0.8 −0.7 0.8
9 −0.1 0.8 −0.3 0.8 0.6 1.1 0.4 1.2 −0.7 0.8 −0.9 1.0
10 −0.5 1.1 −1.1 1.2 1.3 1.2 0.8 1.5 −0.7 1.3 −1.3 1.4
11 −1.2 1.4 −2.2 1.4 1.2 2.5 0.2 2.5 −1.7 1.5 −2.6 1.5
12 0.3 1.4 −0.8 1.5 1.4 1.9 0.3 2.0 0.2 1.3 −1.0 1.5
13 −0.3 0.6 −1.1 0.7 1.4 1.0 0.5 1.0 −0.2 0.6 −1.0 0.7
14 0.7 0.8 −0.2 0.9 2.3 1.4 1.4 1.3 0.5 0.8 −0.4 0.9

aBias is computed as a difference of annual P‐ET‐R.
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source are computed as the flow length divided by the
velocity of the flow. As a first estimate of the average
velocity, we use 1.5 miles/hr according to Smithsonian
National Zoological Park. Then the time series of the lagged
estimated runoff for different SBs is compared to the time
series of inundation to adjust the velocity. Table 5 shows the
lag time based on the assumed velocity range from the
mouth of each upstream SB to the mouth of the SB 12
(Obidos station) and the best‐correlated lag‐time with the
inundation data set. The total lag‐time indicates the average
travel time needed from the mouth of the SB to mouth of the
whole Amazon plus the intraSB travel time. This intraSB

time varies for different SBs depending on the shape and
size of the SB. SBs with one‐month intraSB lag time are
marked with an asterisk. The total travel time for the flow
from SBs 1 and 2 to downstream is three months.
[57] The correlation coefficient between lagged estimated

runoff and observed increases from 0.72 to 0.88 using the
GPCP and ET‐MON‐M combination and from 0.68 to 0.90
using the TMPA and ET‐MON‐M combination. Similarly,
the RMSE decreases from 0.98 to 0.61 for GPCP and from
0.95 to 0.84 for TMPA. The estimated runoff from this
method, for the whole Amazon is compared in Figure 7 to
the observed runoff and the previous (unadjusted) values.
Figure 7 shows that the lagged runoff at the mouth of the
whole Amazon agrees much better in phase and magnitude
with the observed data which supports our explanation and
does not require including underground discharge to resolve
the differences as described by Syed et al. [2005].
[58] Using GPCP data for precipitation, ET‐MON‐M for

evapotranspiration, GRACE with smoothing radius of
500km for total water storage changes and the observed
discharge data, the imbalance, relative error in the basin is
decreased compared with previous studies from 50%
[Marengo, 2005] to 21% over the whole basin. Generally,
estimated runoff using the GPCP‐MON combination is
higher than observed in the northern parts of the Amazon
basin but significantly lower in the western parts, mostly
because of uncertainties in the precipitation data. Dividing
the basin into five parts with similar climate and SB
response, the total absolute error in the western parts of
Amazon is 0.3 mm/d (SB 1, 2, 3), 0.17 mm/d in the northern
part (SBs 4, 5, 6), 0.23mm/d in the southern Amazon (7, 8, 9),
0.25 mm/d in central downstream (SBs 11 and 12), and

Figure 7. Comparison of observed total runoff with estimated runoff from WB and after lagging method
using GPCP combination for 2003–2006. Total error decreased from 1.1 mm/d to 0.65 mm/d (21%).

Table 5. Distance and Travel Time From Mouth of Each SB to
the Obidos Station Along With the Total Lag Time From the
Upstream of Each SB to Its Mouth

SB
Distance

(km Mouth‐to‐Mouth)
Travel Time Range

(v = 0.45–0.9 m/s) days
Total Lag

Time (months)

1 3300 43–86 3
2 2200 29–58 3a

3 1800 24–48 2
4 1650 22–44 1
5 1350 17–35 1
6 1400 18–36 1
7 1800 23–47 2
8 1850 24–48 1
9 1450 18–38 1
10 780 10–20 0
11 750 10–20 1
12 0 0 0
13 0 0 1a

14 0 0 1a

aThe total lag time has one month inter‐SB travel time.
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0.22 mm/d in the eastern Amazon (SB 10, 13, 14) relative to
the area of the whole Amazon basin (total error multiplied by
relative area of the section of Amazon). The average pre-
cipitation, evaporation and runoff over the 14 SBs of Ama-
zon are thus 6.33, 3.27 and 3.07 mm/d, respectively.

4.3. Spatiotemporal Variation of the Water Budget
Components Using the Most Consistent Data
Combination

[59] Figure 8 shows the mean and seasonal variation, as a
difference of extreme values, of the precipitation estimates
from GPCP data. While the northwestern sub‐basins receive
the largest rainfall amounts, they exhibit smaller seasonal

variations such that they never have a dry season with
rainfall less than 3.3 mm/d. The eastern SBs, 10, 13, 14, and
15 have larger seasonal variations of 10–12 mm/d despite
generally smaller annual mean amounts. Generally the
western SBs have the wet season prior to the eastern SBs.
Note also that precipitation in SB 6 has the opposite sea-
sonal variation than the other SBs because of its latitudes.
[60] The mean ET map from ET‐MON‐M in Figure 9a

shows values from about 3 to 3.6 mm/d over the Amazon,
smaller in SBs 6, 8 and 9 with partly flooded Savannah
vegetation and SB 2 located in the Andes. Seasonal vari-
ability of ET (Figure 9b) varies among the SBs, exhibiting
maximum variation in SBs (5, 8, 12, 15). Maximum ET

Figure 8. (a) Annual precipitation and (b) its seasonal
range (max‐min) (mm/d) in different SBs using GPCP for
different SBs for 2003–2006. For more information on
SBs see Table 1.

Figure 9. (a) Mean annual evapotranspiration and (b) its sea-
sonal range (max‐min) (mm/d) for different SBs (numbers)
using ET‐MON for 2003–2006. For more information on
SBs see Table 1.
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accruing in the dry season in these particular forested SBs
(11, 12, 15) from all three ET estimates is consistent with
the analysis by Betts and Silva Dias [2010] and da Rocha
et al. [2004, 2009], which they explain by larger radiation in
this season and more water storage (drainage from upstream
SBs). However, SB 8 has larger ET in the wet season because
of the water stress in a longer dry season (Figure 3). The
vegetation type of this SB is savannah, which makes it dif-
ferent than SB 11 and 12.
[61] The annual mean and variance of the total water

storage (TWS) are shown in Figure 10 from the JPL 500 km
smoothing radius version. The annual mean is negligible for

the most of the SBs (±0.07 mm/d) with a positive sign in
the western SBs and a negative sign in the eastern ones.
Seasonal variation of TWS (Figure 10b), as a difference of
maximum and minimum, shows SBs with larger storage
variation due to accumulation of water from upstream SBs.
In Figure 10, SB 15 which is outlet of the whole Amazon,
shows smaller seasonal variation that the upstream SBs
although its intrabasin P and ET have large variations. This
is because this SB and SB12 receive contributions from
upstream SBs with different wet and dry seasons and
therefore are flooded during their local dry seasons.
[62] Annual mean and seasonal variation of discharge are

shown in Figure 11 based on In situ data. Northwestern SBs
shows larger contributions in net runoff than southern SBs;

Figure 10. (a) Mean and annual water storage changes and
(b) their seasonal range (max‐min) (mm/d) using GRACE
500km smoothing radius for 2003–2006. For more informa-
tion on SBs see Table 1.

Figure 11. (a) Mean and (b) seasonal range (max‐min) of
runoff (mm/d) for different SBs using in situ data for 2003–
2006. For more information on SBs see Table 1.
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but the larger areas of the latter ones produce large discharge
to the outlet of Amazon. The distribution of annual net
runoff among the SBs follows the precipitation distribution:
the largest discharge is observed in northwest SBs (3 to 5)
with the largest annual mean precipitation. In particular, SB
3 exhibits maximum monthly discharge up to 12 mm/d
because of its large P rates and also smaller storage varia-
tions. Since this component is response of the variations of
other components of the water budget, its seasonal variation
follows the combination of other three (Figures 8b, 9b, 10b
and 11b).

5. Dynamics of the Water Budget

[63] After choosing the most consistent data set for pre-
cipitation and evapotranspiration, along with inundation
data and observed runoff and storage changes, we investi-
gate the dynamics of the water balance in the Amazon SBs.
Since the whole Amazon has a very large drainage area
within which wet and dry seasons, vegetation and topog-
raphy all vary, study of the dynamics provides more detail
on the interaction of the atmosphere and land and might
provide a clearer indication of the controlling processes. The
temporal variations of each component of the water budget
are displayed in Figures 8, 9, 10 and 11 and discussed in
Section 4.
[64] These components are linked temporally so that

generally when rainfall increases in the wet season, ET, R
and TWS change as a response. Usually this response is an
increase but there are some contradictory cases that will be
discussed here. For instance, TWS in SB 12 is a minimum
during the dry season and decreased runoff in upstream SBs
while its local dry season occurs two months later (Figure 4).
ET in SBs 5, 11, 12, and 15 with short dry seasons increases
with decreasing P in the dry season because of increased net
radiation (Figure 3). This increase of ET in the dry season in

the eastern tropical forests is reported in extended measure-
ments during LBA by da Rocha et al. [2004] and Goulden
et al. [2004] and contradicts earlier studies showing little
seasonal variation of ET. Conversely, reanalysis ET data
from ERA‐40, exhibits larger seasonal variations of ET
because of insufficient moisture storage in the model root‐
zone [Betts and Silva Dias, 2010].
[65] To investigate inter‐annual variation of the water

budget components, normalized and de‐seasonalized
anomalies of each component are computed for the entire
Amazon basin and displayed in Figure 12 for the 1984–
2006 period. Note that since TWS from GRACE is available
after 2002, it is not included in this analysis and therefore
observed runoff is used. Generally there are opposite sign
anomalies of P and ET while runoff anomalies follow P with
a lag. Although the total anomalies are not sensitive to El
Niño‐Southern Oscillation (ENSO) indices (correlation
coefficients less that 0.5), in extreme events they exhibit
larger variation. The two ET estimates have a better agree-
ment in interannual variability except during La‐Nina of
1999 when ET‐PRI increases with the increased P while
ET‐Zhang decreases.
[66] Figure 13 shows the standard deviation of

de‐seasonalized anomalies of the three components (P, ET
and R) based on GPCP, ET‐Zhang and in situ runoff
gauges. Northern and downstream eastern SBS exhibit
large interannual variability. These anomalies are as large
as 0.82 mm/d for P, 0.22 for ET and 0.80 mm/d for R.
Since these SBs also show large annual mean values, these
results are expected. This might also suggest that in order
to investigate long‐term and significant variability of the
water in Amazon, one should focus on these regions.
[67] In order to analyze the impact of ENSO events on the

water budget components of Amazon SBs, they are divided
into their local wet and dry seasons because of the seasonal
impact of these events. Out of 15 SBs of the Amazon, only

Figure 12. Normalized de‐seasonalized anomalies of water budget components for the entire Amazon
basin. P based on GPCP, ET from ET‐PRI and ET‐Mon‐Z, R is in situ measurements. Indexed Large
ENSO events with positive and negative signs are shaded.
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four exhibit significant correlation to ENSO. Precipitation in
SBs 5, 6, and 12 show significant correlations of 0.65 to 0.8
with the Pacific Nino index (Nino 3.4) for the Dec‐Feb
months. Runoff follows P with a lag time in SBs 5, 6, and
11 and also is cross‐correlated in SB 12 to ENSO (−0.65)
during its dry season. ET does not show any significant
correlation with the ENSO for the entire Amazon.

6. Summary and Conclusions

[68] This study focuses on the spatial and seasonal vari-
ability of the water budget components of the Amazon using
different combination of remote sensing data products and
observed gauge measurements. New information about
TWS changes from GRACE and satellite based ET esti-
mates are used to evaluate terrestrial water balance for more
than four years at intrabasin and whole basin scales. Dif-
ferent data sets for precipitation and evaporation are exam-
ined and the most consistent data combination is selected for
the study of dynamics using a land water balance approach
and spatiotemporal consistency. The best data set for pre-
cipitation is GPCP in combination with ET data from Uni-
versity of Montana. The average annual rainfall for the entire
basin from GPCP is 6.33 mm/d, evaporation from ET‐MON‐
M is 3.28 and runoff from in situ data is 3.06 mm/d. This
method based on water balance give smaller RMSE than
previous atmospheric moisture convergence method [Syed
et al., 2005] (0.61 and 1.28 mm/d respectively) over the
Amazon basin and has a potential to be used to estimate
discharge at different sub‐parts of a large tropical basin.
[69] Study of intrabasin dynamics, based on the consistent

data set, shows that the water budget components, except
ET, exhibit large seasonal variations within the Amazon
basin. The northwest SBs have the largest rainfall amounts,
approximately 8.5 mm/d, while the southern SBs average
5 mm/d. Storage change is also very dynamic and is larger
during the extreme changes of the intraSB precipitation. For
the two downstream SBs the seasonal variation is stronger
during the dry and wet seasons of their upstream SBs with
larger discharge contribution.
[70] The estimated runoff time series have better agree-

ment at SB scale than the total runoff for the whole Ama-
zon. Therefore the estimated runoff from the balance
method for each SB is integrated downstream using an
element‐to‐element routing method. An inundation data set
is used to compute delay times instead of specifying flow
velocities. This delay time is computed based on the max-
imum lag‐correlation between upstream and downstream
SBs. The estimated lagged runoff resolves the dynamics of
the surface runoff better and can be used to estimate the
runoff in different parts of the large Amazon. The absolute
monthly error for the whole Amazon basin decreases from
1.1 to 0.61 mm/d for the GPCP and ET‐MON‐M combi-
nation using the lagging method. This lagging method based
on the TWS from GRACE and time series of inundation
fractions is simple since it does not need assumptions about
the channel Manning roughness and slope of the river and
therefore, can be used in distributed routing models to get
the hydrograph (time series) of the runoff at different
locations for any large‐scale watershed.
[71] Interannual variation of the de‐seasonalized anoma-

lies of P, ET, R for a longer period of 23 years are inves-

Figure 13. Interannual standard deviation (mm/d) of (a) P
based on GPCP, (b) ET based on ET‐Zhang, and (c) R
based on gauges from 1984 to 2006 after filtering high fre-
quencies using 12 months running mean.
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tigated for the whole basin. During this period, there are
large anomalies in all of these three components especially
during ENSO events. The spatial pattern of the interannual
variation of the components follows the mean annual values
so that these anomalies are smaller in southern SBs and
larger in northern and downstream SBs.
[72] There are diverse uncertainties among different

remote sensing retrieved data that affect water balance in the
basin. The estimated uncertainty for GPCP is 0.9 mm/d over
the entire basin [Huffman et al., 2009], but larger biases
occur in the smaller SBs 1 and 3 located in Andes and
northwest part of the Amazon, exhibiting underestimates of
3.2 and 2.3 mm/d, respectively, based on water balance.
Comparison of two different ET estimates shows that there
is 1 mm/d difference between them over the Amazon.
Seasonality is not significant in evaporation except for
southern SB 8 with Savannah vegetation and in Negro and
Amazon rivers as large as 0.6 mm/d as a result of water
stress at SB 8 during the dry season and decreased cloudy
days and larger net radiation in latter (SBs 5, 11 and 12).
This is seen in all three remote sensing based ET data sets
while earlier reanalysis‐based ET estimates did not show
this pattern. Also the effect of smoothing the GRACE data
can introduce more uncertainties to the data.
[73] Improvements in remote sensing products especially

time resolution, may come from the future GPM for pre-
cipitation, soil moisture from SMOS and SMAP, and runoff
from the SWOT mission and may help reduce the uncer-
tainties in the water budget and increase the knowledge of
dynamics at finer time scales over the tropics. Also, other
procedures for analyzing GRACE data might help to reduce
noise and attenuation effects of smoothing of the data sets.
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