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Abstract: Information-theoretic quantities, such as entropy and mutual information (MI), 

can be used to quantify the amount of information needed to describe a dataset or the 

information shared between two datasets. In the case of a dynamical system, the behavior of 

the relevant variables can be tightly coupled, such that information about one variable at a 

given instance in time may provide information about other variables at later instances in 

time. This is often viewed as a flow of information, and tracking such a flow can reveal 

relationships among the system variables. Since the MI is a symmetric quantity; an asymmetric 

quantity, called Transfer Entropy (TE), has been proposed to estimate the directionality of 

the coupling. However, accurate estimation of entropy-based measures is notoriously 

difficult. Every method has its own free tuning parameter(s) and there is no consensus on an 

optimal way of estimating the TE from a dataset. We propose a new methodology to estimate 

TE and apply a set of methods together as an accuracy cross-check to provide a reliable 

mathematical tool for any given data set. We demonstrate both the variability in TE 

estimation across techniques as well as the benefits of the proposed methodology to reliably 

estimate the directionality of coupling among variables. 
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1. Introduction 

Complex dynamical systems consisting of nonlinearly coupled subsystems can be found in many 

application areas ranging from biomedicine [1] to engineering [2,3]. Teasing apart the subsystems and 

identifying and characterizing their interactions from observations of the system’s behavior can be 

extremely difficult depending on the magnitude and nature of the coupling and the number of variables 

involved. In fact, the identification of a subsystem can be an ill-posed problem since the definition of 

strong or weak coupling is necessarily subjective.  

The direction of the coupling between two variables is often thought of in terms of one variable 

driving another so that the values of one variable at a given time influence the future values of the other. 

This is a simplistic view based in part on our predilection for linear or “intuitively understandable” systems. 

In nonlinear systems, there may be mutual coupling across a range of temporal and spatial scales so that 

it is impossible to describe one variable as driving another without specifying the temporal and spatial 

scale to be considered. 

Even in situations where one can unambiguously describe one variable as driving another, inferring 

the actual nature of the coupling between two variables from data can still be misleading since co-varying 

variables could reflect either a situation involving coupling where one variable drives another with a 

time delay or a situation where both variables are driven by an unknown third variable each with different 

time delays. While co-relation (we use the term co-relation to describe the situation where there is a 

relationship between the dynamics of the two variables; this is to be distinguished from correlation, 

which technically refers only to a second-order statistical relationship) cannot imply causality [4], one 

cannot have causality without co-relation. Thus co-relation can serve as a useful index for a potential 

causal interaction. 

However, if past values of one variable enable one to predict future values of another variable, then 

this can be extremely useful despite the fact that the relationship may not be strictly causal. The majority 

of tests to identify and quantify co-relation depend on statistical tests that quantify the amount of 

information that one variable provides about another. The most common of these are based on linear 

techniques, which rely exclusively on second-order statistics, such as correlation analysis and Principal 

Component Analysis (PCA), which is called Empirical Orthogonal Functions (EOFs) in geophysical 

studies [5]. However, these techniques are insensitive to higher-order nonlinear interactions, which can 

dominate the behavior of a complex coupled dynamical system. In addition, such linear methods are 

generally applied by normalizing the data, which implies that they do not depend on scaling effects.  

Information-theoretic techniques rely on directly estimating the amount of information contained in 

a dataset and, as such, rely not only on second-order statistics, but also on statistics of higher orders [6]. 

Perhaps most familiar is the Mutual Information (MI), which quantifies the amount of information that 

one variable provides about another variable. Thus MI can quantify the degree to which two variables 
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co-relate. However, since it is a symmetric measure MI cannot distinguish potential directionality, or 

causality, of the coupling between variables [7]. 

The problem of finding a measure that is sensitive to the directionality of the flow of information has 

been widely explored. Granger Causality [8] was introduced to quantify directional coupling between 

variables. However, it is based on second-order statistics, and as such, it focuses on correlation, which 

constrains its relevance to linear systems. For this reason, generalizations to quantify nonlinear 

interactions between bi-variate time-series have been studied [9]. Schreiber proposed an  

information-theoretic measure called Transfer Entropy (TE) [7], which can be used to detect the 

directionality of the flow of information. Transfer Entropy, along with other information-based 

approaches, is included in the survey paper by Hlavackova-Schindler et al. [10] and differentiation 

between the information transfer and causal effects are discussed by Lizier and Propenko [11]. Kleeman 

presented both TE and time-lagged MI as applied to ensemble weather prediction [12]. In [13], Liang 

explored the information flow in dynamical systems that can be modeled by equations obtained by the 

underlying physical concepts. In such cases, the information flow has been analyzed by the evolution of 

the joint probability distributions using the Liouville equations and by the Fokker-Planck equations, in 

the cases of the deterministic and stochastic systems, respectively [13].  

TE has been applied in many areas of science and engineering, such as neuroscience [1,14], structural 

engineering [2,3], complex dynamical systems [15,16] and environmental engineering [17,18]. In each 

of these cases, different approaches were used to estimate TE from the respective datasets. TE essentially 

quantifies the degree to which past information from one variable provides information about future 

values of the other variable based solely on the data without assuming any model regarding the dynamical 

relation of the variables or the subsystems. In this sense TE is a non-parametric method. The dependency 

of the current sample of a time series on its past values is formulated by kth and lth order Markov processes 

in Schreiber [7] to emphasize the fact that the current sample depends only on its k past values and the 

other process’s past l values. There also exist parametric approaches where the spatio-temporal evolution 

of the dynamical system is explicitly modeled [15,16]. However, in many applications it is precisely this 

model that we would like to infer from the data. For this reason, we will focus on non-parametric methods. 

Kaiser and Schreiber [19], Knuth et al. [20], and Ruddell and Kumar [17,18] have expressed the TE 

as a sum of Shannon entropies [21]. In [17,18], individual entropy terms were estimated from the data 

using histograms with bin numbers chosen using a graphical method. However, as we discuss in 

Appendix A1, TE estimates are sensitive to the number of bins used to form the histogram. Unfortunately, it 

is not clear how to optimally select the number of bins in order to optimize the TE estimate. 

In the literature, various techniques have been proposed to efficiently estimate information-theoretic 

quantities, such as the entropy and MI. Knuth [22] proposed a Bayesian approach, implemented in 

Matlab and Python and known as the Knuth method, to estimate the probability distributions using a 

piecewise constant model incorporating the optimal bin-width estimated from data. Wolpert and Wolf 

[23] provided a successful Bayesian approach to estimate the mean and the variance of entropy from 

data. Nemenman et al. [24] utilized a mixture of Dirichlet distributions-based prior in their Bayesian 

Nemenman, Shafee, and Bialek (NSB) entropy estimator. In another study, Kaiser and Schreiber [19] 

give different expressions for TE as a summation and subtraction of various (conditional/marginal/joint) 

Shannon entropies and MI terms. However, it has been pointed out that summation and subtraction of 

information-theoretic quantities can result in large biases [25,26]. Prichard and Theiler [25] discuss the 
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“bias correction” formula proposed by Grassberger [27] and conclude that it is better to estimate MI 

utilizing a “correlation integral” method by performing a kernel density estimation (KDE) of the 

underlying probability density functions (pdfs). KDE tends to produce a smoother pdf estimate from 

data points as compared to its histogram counterpart. In this method, a preselected distribution of values 

around each data point is averaged to obtain an overall, smoother pdf in the data range. This preselected 

distribution of values within a certain range, which is known as a “kernel”, can be thought of as a window 

with a bandwidth [28]. Commonly-used examples of kernels include “Epanechnikov”, “Rectangular”, 

and “Gaussian” kernels. Prichard and Theiler showed that pdf models obtained by KDE can be utilized 

to estimate entropy [25] and other information theoretic quantities, such as the generalized entropy and 

the Time Lagged Mutual Information (TLMI), using the correlation integral and its approximation 

through the correlation sums [7]. In [25], Prichard and Theiler demonstrated that the utilization of 

correlation integrals corresponds to using a kernel that is far from optimal, also known as the “naïve 

estimator” described in [28]. It is also shown that the relationship between the correlation integral and 

information theoretic statistics allows defining “local” versions of many information theoretical 

quantities. Based on these concepts, Prichard and Theiler demonstrated the interactions among the 

components of a three-dimensional chaotic Lorenz model with a fractal nature [25]. The predictability of 

the dynamical systems, including the same Lorenz model have been explored by Kleeman in [29,30], 

where a practical approach for estimating entropy was developed for dynamical systems with  

non-integral information dimension. 

In the estimation of information-theoretical quantities, the KDE approach requires estimation of an 

appropriate radius (aka bandwidth or rectangle kernel width) for the estimation of the correlation integral. 

In general cases, this can be accomplished by the Garassberger-Procaccia algorithm, as in [31–33]. In order 

to compute the TE from data using a KDE of the pdf, Sabesan and colleagues proposed a methodology 

to explore an appropriate region of radius values to be utilized in the estimation of the correlation sum [14]. 

The TE can be expressed as the difference between two relevant MI terms [19], which can be 

computed by several efficient MI estimation techniques using variable bin-width histograms. Fraser and 

Swinney [34] and Darbellay and Vajda [35] proposed adaptive partitioning of the observation space to 

estimate histograms with variable bin-widths thereby increasing the accuracy of MI estimation. 

However, problems can arise due to the subtraction of the two MI terms as described in [19] and 

explained in [25,26]. 

Another adaptive and more data efficient method was developed by Kraskov et al. [36] where MI 

estimations are based on k-nearest neighbor distances. This technique utilizes the estimation of smooth 

probability densities from the distances between each data sample point and its k-th nearest neighbor and 

as well as bias correction to estimate MI. It has been demonstrated [36] that no fine tuning of specific 

parameters is necessary unlike the case of the adaptive partitioning method of Darbellay and Vajda [35] 

and the efficiency of the method has been shown for Gaussian and three other non-Gaussian distributed 

data sets. Herrero et al. extended this technique to TE in [37] and this has been utilized in many 

applications where TE is estimated [38–40] due to its advantages.  

We note that a majority of the proposed approaches to estimate TE rely on its specific parameter(s) 

that have to be selected prior to applying the procedure. However, there are no clear prescriptions 

available for picking these ad hoc parameter values, which may differ according to the specific 

application. Our main contribution is to synthesize three established techniques to be used together to 
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perform TE estimation. With this composite approach, if one of the techniques does not agree with the 

others in terms of the direction of information flow between the variables, we can conclude that  

method-specific parameter values have been poorly chosen. Here, we propose using three methods to 

validate the conclusions drawn about the directions of the information flow between the variables, as we 

generally do not possess a priori facts about any physical phenomenon we explore. 

In this paper, we propose an approach that employs efficient use of histogram based methods, adaptive 

partitioning technique of Darbellay and Vajda, and KDE based TE estimations, where fine tuning of 

parameters is required. We propose a Bayesian approach to estimate the width of the bins in a fixed  

bin-width histogram method to estimate the probability distributions from data.  

In the rest of the paper, we focus on the demonstration of synthesizing three established techniques 

to be used together to perform TE estimation. As the TE estimation based on the k-th nearest neighbor 

approach of Kraskov et al. [36] is demonstrated to be robust to parameter settings, it does not require 

fine tunings to select parameter values. Thus it has been left for future exploration, as our main goal is 

to develop a strategy for the selection of parameters in the case of non-robust methods.  

The paper is organized as follows. In Section 2, background material is presented on the three TE 

methods utilized. In Section 3, the performance of each method is demonstrated by applying it to both a 

linearly coupled autoregressive (AR) model and the Lorenz system equations [41] in both the chaotic 

and sub-chaotic regimes. The latter represents a simplified model of atmospheric circulation in a 

convection cell that exhibits attributes of non-linear coupling, including sensitive dependence on model 

parameter values that can lead to either periodic or chaotic variations. Finally conclusions are drawn in 

Section 4. 

2. Estimation of Information-Theoretic Quantities from Data 

The Shannon entropy: ܪ(ܺ) = −(ݔ)log(ݔ)௫∈  (1)

can be used to quantify the amount of information needed to describe a dataset [21]. It can be thought of 

as the average uncertainty for finding the system at a particular state “x” out of a possible set of states 

“X”, where p(x) denotes the probability of that state. 

Another fundamental information-theoretic quantity is the mutual information (MI), which is used to 

quantify the information shared between two datasets. Given two datasets denoted by X and Y, the MI 

can be written as: 

( ) ( ) ( )
( ) ( )

∈∈

=
YxXx ypxp

yxp
yxpYXMI

,
log,,

 
(2)

This is a special case of a measure called the Kullback-Leibler divergence, which in a more general 

form is given by: ܦ|| = ݈݃(ݔ) ௫∈(ݔ)ݍ(ݔ)  (3)

which is a non-symmetric measure of the difference between two different probability distributions p(x) 

and q(x). We can see that in Equation (2), the MI represents the divergence between the joint distribution 
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p(x,y) of variables x and y and the product p(x)p(y) of the two marginal distributions. The MI is a 

symmetric quantity and can be rewritten as a sum and difference of Shannon entropies by: ܫܯ(ܺ, ܻ) = (ܺ)ܪ + (ܻ)ܪ − ,ܺ)ܪ ܻ) (4)

where  is the joint Shannon entropy [21,42]. 

To define the transfer entropy (TE), we assume that there are two Markov processes such that the 

future value of each process either depends only on its past samples or on both its past samples and the 

past samples of the other process. Thus, the TE is defined as the ratio of the conditional distribution of 

one variable depending on the past samples of both processes versus the conditional distribution of that 

variable depending only on its own past values [7]. Thus the asymmetry of TE results in a differentiation 

of the two directions of information flow. This is demonstrated by the difference between Equation (5a), 

which defines the transfer entropy in the direction from X to Y and Equation (5b), which defines the 

transfer entropy in the direction from Y to X: 

ܧܶ = ܶቀ ܻାଵቚ܇(), ()ቁ܆ =  ,ାଵݕቀ ,()ܡ ()ቁlogଶܠ ,()ܡ|ାଵݕቀ ()ܠ,(ೖ)ܡ,()ቁ௬శభܡ|ାଵݕቀ()ቁܠ  (5a)

ܧܶ = ܶቀ ܺାଵቚ܆(), ()ቁ܇ =  ,ାଵݔቀ ,()ܠ ()ቁlogଶܡ ,()ܠ|ାଵݔቀ ()ܡ,(ೖ)ܠ,()ቁ௫శభܠ|ାଵݔቀ()ቁܡ  (5b)

where ܠ() = ,ݔ} … , ()ܡ ିାଵ}andݔ = ,ݕ} … ,  ିାଵ} are past states, and X and Y are kth and lth orderݕ

Markov processes, respectively, such that X depends on the k previous values and Y depends on the l 

previous values. In the literature, k and l are also known as the embedding dimensions [33]. As an 

example, Equation (5b) describes the degree to which information about Y allows one to predict future 

values of X. Thus, the TE can be used as a measure to quantify the amount of information flow from the 

subsystem Y to the subsystem X. TE, as a conditional mutual information, can detect synergies between 

Y and ࢄ() in addition to removing redundancies [43,44]. In the following sections, we briefly introduce 

three methods used in the literature to estimate the quantities in Equation (5) from data. 

2.1. Fixed Bin-Width Histogram Approaches 

To estimate the quantities in Equation (5), conditional distributions are generally expressed in terms 

of their joint counterparts as in: ܶܧ = ܶቀ ܺାଵቚ܆(), ()ቁ܇ =  ,ାଵݔቀ ,()ܠ ()ቁlogଶܡ ,ାଵݔቀ ,()ܠ ,ାଵݔቀ()ቁܠቀ()ቁܡ ,()ܠቀ()ቁܠ ()ܡ,(ೖ)ܠ,()ቁ௫శభܡ  (6)

In this sense, the TE estimation problem can be cast as a problem of density estimation from data. 

One of the most straightforward approaches to density estimation is based on histogram models [28,45]. 

However, histograms come with a free parameter—the number of bins. Unfortunately, the estimation of 

entropy-based quantities varies dramatically as the number of bins is varied. Numerous methods to 

identify the number of bins that optimally describes the density of a data set have been published [45,46]. 

However, most of these techniques assume that the underlying density is Gaussian. In this paper, we rely 

on a generalization of a method introduced by Knuth [20,22], which we refer to as the Generalized Knuth 

H X,Y( )
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method. In this method, each of N observed data points is placed into one of M fixed-width bins, where 

the number of bins is selected utilizing a Bayesian paradigm. If the volume and the bin probabilities of 

each multivariate bin are denoted by V and ߨ for the ith bin, respectively, then the likelihood of the data 

is given by the following multinomial distribution:  ܯ|܌), (ߨ = ൬ܸܯ൰ே ଶమߨଵభߨ ெಾ (7)ߨ…

where	܌ = [݀ଵ, ݀ଶ, … , ݀ே] denote the N observed data points, ݊ଵ, ݊ଶ, … , ݊ே	denote the number of data 

samples in each bin and ࣊ = ,ଵߨ] ,ଶߨ … , [ெߨ denote the bin probabilities. Given M bins and the 

normalization condition that the integral of the probability density equals unity, we are left with M-1 bin 

probabilities, denoted by ,ଵߨ	 ,ଶߨ … , ெିଵߨ . The normalization condition requires that 	ߨெ = (1 − ∑ ெିଵୀଵߨ ) [22]. The non-informative prior [20] is chosen to represent the bin probabilities: 

(ܯ|࣊) = Γ ቀ2ܯቁΓ ቀ12ቁெ ߨଵ, ,ଶߨ … , ,ெିଵߨ ൭1 −  ெିଵߨ
ୀଵ ൱൩ିଵ ଶൗ

 (8)

which is a Dirichlet prior conjugate to the multinomial likelihood function and Γ denotes the Gamma 

function [56]. The non-informative uniform prior models a priori belief regarding the number of bins 

where C denotes the maximum number of bins considered: (ܯ) = ൜ିܥଵ, 1 ≤ ܯ ≤ ,0ܥ otherwise  (9)

The posterior distribution of the bin probabilities and the bin numbers are given by Bayes theorem, 

which is written here as a proportionality where the Bayesian evidence, (܌),  is the implicit 

proportionality constant: (܌|ܯ,ૈ) ∝ (10) (ܯ,ૈ|܌)(ܯ)(M|ૈ)

Since the goal is to obtain the optimal number of constant-width bins one can marginalize over each 

of the bin probabilities resulting in the posterior of the bin number, which can be logarithmically written 

as follows [22]: log	(܌|ܯ) = ܰlog	ܯ + log	Γ ൬2ܯ ൰ logܯ− Γ ൬12൰ − log Γ ൬ܰ 2൰ܯ+ +log Γ ൬݊ + 2൰ܯ + ெܭ
ୀଵ  (11)

where K is a constant. To find the optimal number of bins, the mode of the posterior distribution in 

Equation (11) is estimated as follows: ܯ = maxெ {log (12) {(ࢊ|ܯ)

In Appendix II, we present the performance of entropy estimation based on the selection of the 

Dirichlet exponent, chosen as 0.5 in Equation (8). Below, we generalize this exponent of the Dirichlet 

prior to relax the constraint as follows: (ܯ|࣊) = Γ(∑ ெୀଵߚܯ )Γ(ߚ)ெ ߨଵ, ,ଶߨ … , ,ெିଵߨ ൭1 −  ெିଵߨ
ୀଵ ൱൩ఉିଵ (13)

In the literature, the prior in Equation (13) has been utilized to estimate the discrete entropy given by 

Equation (1), where the number of bins are assumed to be known, whereas here, we try to approximate 
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a continuous pdf, thus the entropy, using a piecewise-constant model, where the number of bins is not 

known. In these publications, the main concern is to estimate Equation (1) as efficiently as possible for 

a small number of data samples. Different estimators have been named. For example, the assignment of 
 results in the Krichevsky-Trofimov estimator and the assignment of 		ߚ = 1 ൗܯ  results in the 

Schurman-Grassberger estimator [23,24]. Here, we aim to approximate the continuous-valued 

differential entropy of a variable shown by using finite-precision data:  ℎ(ܺ) = −න ̂ ݈݃(ݔ)  ൨(ݔ)݉(ݔ)̂ (14) ݔ݀

Using the same prior for the number of bins in Equation (9) and the procedures given by  

Equation (10) through Equation (12), the marginal posterior distribution of the bin numbers under the 

general Dirichlet prior Equation (13) is given by: 

log (܌|ܯ) = ܰlog	ܯ + log Γ(ߚܯ) − logܯ Γ(ߚ) − log Γ(ܰ (ߚܯ+ +log Γ(݊ + (ߚ + ெܭ
ୀଵ  (15)

Again, the point estimate for the optimal bin number can be found by identifying the mode of the 
above equation, that is, ܯ = maxெ {log	(ࢊ|ܯ)} where (܌|ܯ) is obtained from Equation (15). 

After the estimation of the optimal number of bins, the most important step is the accurate calculation 

of TE from the data. In [19], the TE is expressed as a summation of Shannon entropy terms:  ܶܧ = ܶቀ ܺାଵቚ܆(), ()ቁ܇ = ,()܆ቀܪ ()ቁ܇ − ,(ାଵ)܆ቀܪ ()ቁ܇ + (ାଵ)ቁ܆ቀܪ − ()ቁ (16)܆ቀܪ

where ܆() = ,܆} ,ିଵ܆ … , {ିାଵ܆  denotes a matrix composed of k vectors [19] where ݅ ,݇)ݔܽ݉= ݈) + 1.	  In other words, the latter representation can be interpreted as a concatenation of  

k column vectors in a matrix, where ܆ = ,ݔൣ ,ିଵݔ … , ,ିௌ൧்ݔ ܆ = ,ିଵݔൣ ,ିଶݔ … ,  ିௌାଵ൧்and S is theݔ

length of the column vector, defined as ܵ = ,(ܺ)ℎݐ൫݈݁݊݃ݔܽ݉ ℎ(ܻ)൯ݐ݈݃݊݁  . Here,  denotes 

transposition. Above, ܪቀ܆(), ()ቁ܇  is short for ܆)ܪ, ,ିଵ܆ … , ,ିାଵ܆ ,܇ ,ିଵ܇ … , (ିାଵ܇ , where x 

denotes a particular value of the variable X and boldface is utilized to represent vectors. If k = l = 1 is 

selected, Equation (16) takes the following simplified form [20]: ܶܧ = ܶ(Xାଵ|X, Y) = ,X)ܪ Y) − ,Xାଵ)ܪ X, Y) + ,Xାଵ)ܪ X) − (17) (X)ܪ

In the best scenario, the above TE estimation requires the three-dimensional joint Shannon entropy, 

whereas its general expression in Equation (16) needs a k+l+1-dimensional entropy estimation. 

According to our tests, if we use the prior in Equation (13), when ߚ = 10ିଵ, posterior pdf estimates 

are biased significantly (see Appendix III), especially in high-dimensional problems. Thus, we aim to 

overcome this problem by using the generalized prior in Equation (13) for the Dirichlet prior with β 

values around 0.1. Using the generalized prior Equation (13), after selecting the number of bins by 

Equation (15), the mean value of the posterior bin height probability can be estimated by [22]:  〈ߨ〉 = ݊ + ܰߚ ߚܯ+ , ݇ = 1,… (18) .ܯ,

As the prior is Dirichlet and the likelihood function is multinomial-distributed, the posterior 

distribution of bin heights is Dirichlet-distributed with the mean given in Equation (18) above [22,47]. 

5.0=β

( )T⋅
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This allows us to sample from the Dirichlet posterior distribution of the bin heights to estimate the joint 

and marginal pdf’s in the TE equations and then estimate their Shannon entropies and their uncertainties, 

too. The schematic in Figure 1 illustrates this procedure for estimating the entropies and their associated 

uncertainties.  

 

Figure 1. This schematic illustrates the procedure for estimating entropy as well as the 

uncertainty from data. First the number of bins is selected using the mode of the logarithm 

of the Dirichlet posterior in Equation (15). The Dirichlet posterior is then sampled resulting 

in multiple estimates of the pdf. The entropy of each pdf is estimated and the mean and 

standard deviation computed and reported. 

As previously described, this method is known to produce biases, especially as higher dimensions are 

considered. There are a couple of reasons for this. As the pdf is modeled by a uniform distribution within 

a single bin, this corresponds to the maximum entropy for that bin. Additionally, Equation (18) tells us 

that, even if there is no data sample in a specific bin, an artificial amount β is added to the average bin 

probability. On the other hand, this addition mitigates the entropy underestimation encountered in the 

case of many empty bins, which is prevalent in higher dimensions. Moreover, the TE is estimated by the 

addition and subtraction of the marginal and joint Shannon entropies, as shown in Equation (16). 

Prichard and Theiler describe the artifacts originating from this summation procedure and advise using 

KDE methods instead [25]. However, before considering the KDE method, we discuss an alternative 

histogram method that has been proposed to overcome some of the drawbacks of the fixed-bin-width 

histogram approaches. In addition to the conjugate pairs of multinomial likelihood and Dirichlet prior 

model, the research topic of exploring other models has always been interesting. In addition to this 

conjugate pair, optimal binning in the case of other models, such as that of [24] including a mixture of 

Dirichlets provides a challenging research for optimal binning of data with the goal of efficient pdf 

estimation from the data.  

2.2. Adaptive Bin-Width Histogram Approaches 

The fixed bin-width histogram approaches are not very effective for estimating information-theoretic 

quantities from data due to the inaccurate filling of the bins with zero sampling frequency. Instead of 

generating a model based on bins with equal width, one can design a model consisting of bins with 

varying widths, determined according to a statistical criterion. Fraser and Swinney [34] and Darbellay 

and Vajda [35] proposed the adaptive partitioning of the observation space into cells using the latter 
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approach and estimated the mutual information (MI) directly. Here, we will focus on the method 

proposed by Darbellay and Vajda. This approach relies on iteratively partitioning the cells on the 

observation space, based on a chi-square statistical test to ensure conditional independence of the 

proposed partitioned cells from the rest of the cells. We explain the details of this method schematically 

on Figure 2. Here, observation space of (X, Y) is shown by the largest rectangle. The partitioning of the 

observation space is done as follows:  

1. Initially, we start with the largest rectangle containing all data samples. 

2. Any cell containing less than two observations (data pairs) is not partitioned. The cell, which is 

partitioned into smaller blocks, is known as the parent cell; whereas each smaller block after 

partitioning is named as a child cell. 

3. Every cell containing at least two observations is partitioned by dividing each one of its edges 

into two halves. It means four new cells are generated (according to the independence test, which 

will be described below). 

4. In order to test whether we need to partition the upper cell (parent cell) into more cells (child cells), 

we rely on the Chi-Square test of independence, where the null hypothesis is phrased as follows: 

H0: Sample numbers N1, N2, N3, N4 in four child cells are similar (in other words, the sample 

distribution in the parent cell was uniform) 

The Chi-Square (χ2) test statistic for a 5% significance level with 3 degrees of freedom is given  

as follows: ܶ =ቆ∑ ܰ4 − ܰቇଶ ≤ ߯ଽହ%ଶ (3) = 7.81ସ
ୀଵ  (19)

If we happen to find that ܶ > 7.81, we decide that the numbers of samples in each child cell are not 

similar and therefore we continue partitioning. Otherwise, we conclude that the numbers are similar and 

partitioning is stopped at this level. The data samples in this cell are used in the MI estimation. 

(A) (B) 

Figure 2. Illustration of the Adaptive Partitioning algorithm of Darbellay and Vajda (A) The 

observation space of two-dimensional data (X,Y) and its illustrative partitioning according to 

the independence test; (B) The corresponding tree showing the partitioning of each cell. 
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In this method, the level of statistical significance can be chosen according to the design, thus raising 

as a parameter to be tuned according to the application. After the partitioning is completed, the MI is 

estimated as shown below: ܫܯே(ܺ, ܻ) = ܰܰ log ܰܰ൬ ௫ܰ,ܰ ൰ ൬ ௬ܰ,ܰ ൰
ୀଵ  (20)

where N denotes the total number of data samples with ܰ showing the subset of these samples that fall 
into the ith cell, ܥ , after the partitioning process is completed. Above, ௫ܰ,  and ௬ܰ,	 represent the 

numbers of observations having the same x and y coordinates as observations in the cell ܥ, respectively. 

The partitioning process is illustrated below using a similar discussion to that in [35]. The observation 

space is first divided into four child cells, namely C1, C2, C3, C4, to maintain equiprobable distributions 

in each cell. This forms the first set of branches shown in Figure 2b. Then, according to the independence 

test, C1 is divided into four cells whereas C2, C3, C4 are retained to be included in the MI estimation and 

they are not divided into more child cells, forming the second layer of the partitioning tree shown in 

Figure 2b. Finally, the third child cell of partition C3 is divided into four child cells, namely C131, C132, 

C133 and C134. In the last step, each cell is utilized in the MI estimation formula given by Equation (20). 

It should be noted that the partitioning is performed symbolically here for the sake of a better explanation 

without showing the actual data samples on the observation space, as done in [35]. 

As a result, finer resolution is used to describe larger MI regions and lower resolution is used for 

smaller MI regions [35]. Having estimated the MI from the data efficiently, the TE can be calculated 

using the expressions from [19] by: ܶܧ = ܶቀXାଵቚ܆(), ()ቁ܇ = ܫܯ ቀXାଵ, ቂ܆(), ()ቃቁ܇ − ,ቀXାଵܫܯ ()ቁ (21)܆

where ܫܯ ቀXାଵ, ቂ܆(), ()ቃቁ܇  denotes the MI between Xାଵ  and the joint process denoted by  ቂ܆(),  .()ቃ [19]܇

Because the MI is estimated more efficiently by this method, the overall TE estimation becomes less 

biased compared to the previous methods. However, the subtraction operation involved in Equation (21) 

can still produce a significant bias in the TE calculations. To overcome problems related to the addition 

and subtraction of information-theoretic quantities, KDE estimation methods have been utilized in the 

literature to estimate MI and redundancies [25], and TE in [49]. 

2.3. Kernel Density Estimation Methods  

Kernel Density Estimation (KDE) is utilized to produce a smoothed pdf estimation using the data 

samples, which stands in contrast to the histogram model which has sharp edges resulting from a uniform 

distribution within each bin. In this method, a preselected distribution of values around each data sample 

is summed to obtain an overall, smoother pdf in the data range. This preselected distribution of values 

within a certain range is known as a “kernel”. Some of the most commonly used kernels are 

“Epanechnikov”, “Rectangular” and “Gaussian” [28]. Each kernel can be thought of as a window with 

a bandwidth or radius. Prichard and Theiler [25] showed that KDE can also be utilized to estimate 

entropy by the computation of the generalized correlation integral [7], which is approximated by the 

correlation sum. Even if a rectangular kernel is used, the resulting entropy estimation is more accurate 
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compared to the histogram approach as discussed in [25]. In this method, entropies are estimated by first 

calculating the correlation sums through the Grassberger-Procaccia (GP) algorithm or some other 

effective procedure. Interested readers are referred to [31–33] for a detailed description of the algorithm. 

Here, the joint probabilities in the TE expression (6) can be estimated from data by the following 

equation, which is known as the generalized correlation sum [7]: 

,ାଵݔఌቀ ,()ܠ ()ቁܡ ≅ 1ܰ દቌߝ − ቯݔାଵ − ()ܠାଵݔ − ()ܡ()ܠ − ()ܡ ቯቍ = ,ାଵݔቀܥ ,()ܠ ;()ܡ ቁேߝ
ஷ  (22)

where દ(ݔ > 0) = 1; દ(ݔ < 0) = 0	is the Heaviside function and ε is the radius around each data 

sample. In Equation (22), we count the number of neighboring data samples which are within ε distance. 

As a distance measure, the maximum norm, denoted ‖∙‖, has been selected here, but the Euclidean norm 

could also be utilized. On the right-hand side of Equation (22), ܥቀݔାଵ, ,()ܠ ;()ܡ  gives the mean	ቁߝ

probability that the states at two different indices (i and m) are within ε distance of each other. Using 

Equation (22), the TE can be expressed as [49,50]: 

ܧܶ = ൾlogଶ ,ାଵݔቀܥ ,()ܠ ;()ܡ ;()ܠቀܥቁߝ ,ାଵݔቀܥቁߝ ;()ܠ ,()ܠቀܥቁߝ ;()ܡ ቁං (23)ߝ

where . denotes the expectation [50]. 

The problem is that this method also has a free parameter, the radius value, ε, which must be selected 

to estimate the neighborhoods. Choosing this radius is similar to choosing the fixed bin width in a 

histogram. We utilize the Grassberger-Procaccia algorithm to plot log ߝ  versus log ൬ܥቀݔାଵ, ,()ܠ ;()ܡ  .ቁ൰. The linear section along the resulting curve is used to select the radius εߝ

However, picking a radius value from any part of the linear section of the log ߝ  versus log ൬ܥቀݔାଵ, ,()ܠ ;()ܡ  ቁ൰ curve appears to make the results sensitive over the broad range of possibleߝ

values. This is explored in the following section and the benefit of exploring an appropriate radius range 

with the help of the embedding dimension selection is pointed out. 

2.3.1. Selection of the Radius with the Embedding Dimensions in Kernel Density Estimation  

(KDE) Method 

Here we explain a method to select the radius based on the above discussion in concert with the choice 

of the embedding dimensions k and l, based on the discussions in [14]. We demonstrate this procedure 

on a system consisting of a pair of linearly-coupled, autoregressive signals [51]: ݕ(݅ + 1) = (݅)ݕ0.5 + ݊ଵ(݅)	ݔ(݅ + 1) = (݅)ݔ0.6 + (݅)ݕܿ + ݊ଶ(݅) ݊ଵ~ࣨ(0,1)݊ଶ~ࣨ(0,1)ܿ ∈ [0.01,1] (24)
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where ࣨ(ߤ,  denotes the normal distribution with mean μ and standard deviation σ and the constant c (ߪ

denotes the coupling coefficient. First, we generate the log versus log ߝ ൬ܥቀݔାଵ, ,()ܠ ;()ܡ  .ቁ൰ curveߝ

The log versus log ߝ ൬ܥቀݔାଵ, ,()ܠ ;()ܡ  .ቁ൰ curve is displayed in Figure 3 for different k values and c = 1ߝ

 

Figure 3. Exploration of the optimal radius for the KDE of a pdf using the  

Grassberger-Procaccia method. The figure illustrates the Correlation Sum, defined in  

Equation (22), estimated at different radius values represented by ε for the coupled AR model. 

Here, l = 1 is selected [14]. It is known that the optimal radius lies in the linear region of these curves, 

where its logarithm is a point on the horizontal axis [14]. Above, we notice that the range of the radius 

values corresponding to the linear section of each curve varies significantly. As the k value increases, 

the linear region for each curve moves right, toward higher ε values [33]. With the increasing embedding 

dimensions, the embedding vectors include data, which are sampled with a lower frequency, i.e., 

undersampling, leading to an increase in ε to achieve the same correlation sum obtained with a smaller 

radius. For example, a set of radius values within the range of −3 ≤ log	ߝ ≤ 0 provides the linear section 

of the log	ܥ curve for k = 1, whereas these values are not within the range of radius values used in 

forming the log C - log	ߝ curve for an embedding dimension of k = 10. Thus, selection of an embedding 

dimension k first and then a radius value from the corresponding linear region on the curve can help us 

search for the radius in a more constrained and efficient way. 

As seen in Figure 3, we end up with different radius ranges to select, based on the determination of 

the embedding dimension, k. Sabesan et al. [14] provide an approach to select the radius (ε) and k 

together. 

According to [14,52], the embedding dimension, k, can be selected by considering the first local 

minimum of the Time-Lagged MI (TLMI) of the destination signal, followed by the determination of a 

radius value. The radius is selected such that it falls into the linear region of the curve for the 

corresponding k value, given in Figure 3. The k value, corresponding to the first local minima of MI(k), 

provides us with the time-lag k, where the statistical dependency between the current sample xi and its k 
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past value xi-k is small. TLMI is defined by the following equation for the AR signal given in  

Equation (24): 

( ) ( ) ( )
( ) ( )

−

−
−=

x kii

kii
kii xpxp

xxp
xxpkMI

,
log, (25)

Below, we provide an estimate of the MI(k) of the AR signal, xi, for different time lags ݇ ∈ [1,… ,50]. 
The adaptive partitioning algorithm of Darbellay and Vajda [35] was utilized to estimate the MI. As the 

MI is not bounded from above, we normalize its values between 0 and 1 as recommended in the literature, 

using the following formula [53]: ߣ = ඥ1 − ݁ିଶெூ (26)

In Figure 4, we show the normalized MI for different lags after taking an ensemble of 10 members of 

the AR process x and utilizing an averaging to estimate MI.  

Above, the first local minimum value of MI(k) is obtained at k = 10. Thus, we turn to Figure 3 to 

select a radius value on the linear region of the curve with the embedding dimension k = 10. This region 

can be described by the following values: 0.8 ≤ log	ߝ ≤ 1.4 . Thus, we can choose k = 10 and 	logߝ = 0.85 along with l = 1. If k = l = 1 is selected, the corresponding linear region on Figure 3 changes 

and a selection of logߝ = −1 can be chosen, instead. Once the radius and the embedding dimensions are 

determined, TE is estimated by Equation (23) using the correlation sums. These estimates are illustrated 

in Figure 5A,B for k = l = 1 and k = l0, l = 1; respectively. 

In the next section, we will elaborate on the performance of the three methods used in TE estimation 

and emphasize the goal of our approach, which is to use all three methods together to fine tune their 

specific parameters. 

 

Figure 4. Ensemble averaged and normalized Time-lagged MI(k). As described in the text, 

the first local minima of the MI leads to the condition ݇ = 10. 
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(A) 

(B) 

Figure 5. This figure illustrates TE estimation versus the coupling coefficient c in Equation (24) 

using the KDE method. (A) Both TEYX
 (blue-solid) and TEXY

 (red-dash dot) are estimated 

using the KDE method and illustrated along with the analytical solution (black-dotted) for  

k = l = 1. As there is no coupling from X to Y, analytically ܶܧ = 0; (B) TEYX
 (blue-solid) 

and TEXY
 (red-dash dot) are estimated using the KDE method for k = 10, l = 1. 
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3. Experiments 

In the preceding section, we described three different methods for estimating the TE from data, 

namely: the Generalized Knuth method, the adaptive bin-width histogram and the KDE method. We 

emphasized that we can compute different TE values by these three different methods, as the TE 

estimations depend on various factors, such as the value of the selected fixed bin-width, the bias resulting 

due to the subtraction and addition of various Shannon entropies, embedding dimensions and the value 

of the chosen KDE radius value. Due to this uncertainty in the TE estimations, we propose to use these 

three main techniques together to compute the TE values and to consistently identify the direction of 

relative information flows between two variables. With this approach, if one of the techniques does not 

agree with the others in terms of the direction of information flows between the variables, we determine 

that we need to fine tune the relevant parameters until all three methods agree with each other in the 

estimation of the NetTE direction between each pair of variables. The NetTE between two variables X 

and Y is defined to be the difference between ܶܧ	 and ܶܧ, which is defined as the difference of the 

TE magnitudes with opposite directions between X and Y: ܰ݁ܧܶݐ = max(ܶܧ, (ܧܶ − min(ܶܧ, ) (27)ܧܶ

The NetTE allows us to compare the relative values of information flow in both directions and 

conclude which flow is larger than the other, giving a sense of main interaction direction between the 

two variables X and Y. 

In order to use three methods together, we demonstrate our procedure on a synthetic dataset generated 

by a bivariate autoregressive model given by Equation (24). In Section 2.3.1, we have already described 

the KDE method using this autoregressive model example and we have explored different radius values 

in the KDE method by utilizing the Grassberger-Procaccia approach in conjunction with different 

selections of ݇ values. In Section 3.1, we continue demonstrating the results using the same bivariate 

autoregressive model. We focus on the analysis of the adaptive partitioning and the Generalized Knuth 

methods. First, we analyze the performance of the adaptive partitioning method at a preferred statistical 

significance level. Then, we propose to investigate different ߚ  values to estimate the optimal fixed  

bin-width using Equation (15) in the Generalized Knuth method.  

If an information flow direction consensus is not reached among the three methods, we try different 

values for the fine-tuning parameters until we get a consensus in the NetTE directions. 

When each method has been fine-tuned to produce the same NetTE estimate, we conclude that the 

information flow direction has been correctly identified.  

In Section 3.2, we apply our procedure to explore the information flow among the variables of the 

nonlinear dynamical system used by Lorenz to model an atmospheric convection cell. 

3.1. Linearly-Coupled Bivariate Autoregressive Model 

In this section, we apply the adaptive partitioning and the Generalized Knuth methods to estimate the 

TE among the processes defined by the same bivariate linearly-coupled autoregressive model (with 

variable coupling values) given by the equations in Equation (24). We demonstrate the performance of 

each TE estimation method using an ensemble of 10 members to average. The length of the synthetically 

generated processes is taken to be 1000 samples after eliminating the first 10,000 samples as the 
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transient. For each method, TE estimations versus the value of coupling coefficients are shown in  

Figures 5–7 for both directions between processes X and Y. It should be noted that the process X is 

coupled to Y through coefficient c. Thus, there is no information flow from X to Y for this example, i.e., ܶܧ = 0 analytically. The analytical values of ܶܧ  have been obtained using the equations in [19] for  

k = 1 and l = 1. The performance of the three methods have been compared for the case of k = 1 and l = 1. 

Below, TE is estimated for both directions using coupling values ranging from c = 0.01 to c =1 in 

Equation (24). The information flows are consistently estimated to be in the same direction for all three 

methods, i.e., ܶܧ ≥  . If we compare the magnitudes of these TE estimates, we observe that theܧܶ

biases between the analytic solution and the ܶܧ	of the adaptive partitioning method, KDE and the 

Generalized Knuth method increase as the coefficient of the coupling in the autoregressive model 

increases to c = 1. 

Above, we demonstrate the TE estimations using the KDE method with different embedding 

dimensions and different radius values. In Figure 5A, B, we observe that the directions of each TE can 

be estimated correctly, i.e., ܶܧ ≥   for the model given in Equation (24), demonstrating that weܧܶ

can obtain the same information flow directions, but with different bias values. 

Below, results in Figure 5A are compared with the other two techniques for k = l = 1. 

 

Figure 6. This figure illustrates TE estimation versus the coupling coefficient c in  
Equation (24) using the adaptive partitioning method. Both TEYX

 (blue-solid) and TEXY
 

(red-dash dot) are estimated using the adaptive partitioning method and illustrated along with 

the analytical solution (black-dotted). As there is no coupling from X to Y, analytically ܶܧ = 0. A statistical significance level of 5% has been utilized in the χ2 test Equation (19) 

for a decision of partitioning with k = l = 1. 
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Figure 7. This figure illustrates TE estimation versus the coupling coefficient c in  
Equation (24) using the Generalized Knuth method. Both TEYX

 (blue solid) and TEXY
  

(red-dash dot) are estimated for ߚ = 10ିଵ	and illustrated along with the analytical solution 

(black dotted) where k = l = 1 is chosen. 

When the magnitudes of the  estimates are compared in Figures 5A and 6, we observe bias both 

in ܶܧ	and	ܶܧ, whereas there is no bias in the ܶܧ estimate in the Generalized Knuth method using ߚ = 10ିଵ. On the other hand, the adaptive partitioning method provides the least bias for ܶܧ whereas 

KDE seems to produce larger bias for low coupling values and lower bias for high coupling values in 

Figure 5A, compared to the Generalized Knuth method with ߚ = 10ିଵ in Figure 7. 

For example, for ܿ = 1, we note from the three graphs that the estimated transfer entropies are ܶܧ ≅ 0.52, ܧܶ ≅ 0.43, ܧܶ ≅ 0.2,	for the adaptive partitioning, the KDE with k = l = 1 and the 

Generalized Knuth method with ߚ = 10ିଵ, respectively. As the bias is the difference between the 

analytical value (ܶܧ = ݇	ݎ݂	0.55 = ݈ = 1) and the estimates, it obtains its largest value in the case 

of the Generalized Knuth method with ߚ = 10ିଵ . On the other hand, we know that there is no 

information flow from the variable X to variable Y, i.e., ܶܧ = 0. This fact is reflected in Figure 7, but 

not in Figures 5A and 6 where TEXY is estimated to be non-zero, implying bias. As the same computation 

is also utilized to estimate ܶܧ (in the other direction), we choose to analyze the NetTE, which equals 

the difference between ܶܧ	and ܶܧ, which is defined in Equation (27). Before comparing the NetTE 
obtained by each method, we present the performance of the proposed Generalized Knuth method for 

different β values. 

3.1.1. Fine-Tuning the Generalized Knuth Method 

In this sub-section, we investigate the effect of β on the TE estimation bias in the case of the 

Generalized Knuth method. The piecewise-constant model of the Generalized Knuth method approaches 

a pure likelihood-dependent model, which has almost a constant value as ߚ  goes to zero in  

TEYX
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Equation (18). In this case, the mean posterior bin heights approach their frequencies in a bin, i.e., 〈ߨ〉 = ே . 

In this particular case, empty bins of the histogram cause large biases in entropy estimation, especially 

in higher dimensions as the data becomes sparser. This approach can only become unbiased 

asymptotically [54]. However, as shown in Equation (18), the Dirichlet prior with exponent β artificially 

fills each bin by an amount, β, reducing the bias problem. In Appendix III, Figure A3 illustrates the 

effect of the free parameter β on the performance of the marginal and joint entropy estimates. We find 

that the entropy estimates fall within one to two standard deviations for ߚ ≅ 0.1. The performance 

degrades for much smaller and much larger β values. Figures 8 and 9 illustrate less bias in TEYX estimates 

for ߚ = 0.1 and ߚ = 0.5 unlike the case in shown in Figure 7 where we use ߚ = 10ିଵ. However, the 

bias increases for low coupling values in these two cases. To illustrate the net effect of the bias, we 

explore NetTE estimates of Equation (27) for these cases in Section 3.1.2. 

 

Figure 8. This figure illustrates TE estimation versus the coupling coefficient c in  

Equation (24) using the Generalized Knuth method method for ߚ = 0.1, ݇ = ݈ = 1. These 

are illustrated along with the analytical solution. 
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Figure 9. This figure illustrates TE estimation versus the coupling coefficient c in Equation (24) 

using the generalized piecewise-constant method (Knuth method) for ߚ = 0.5, ݇ = ݈ = 1. 

These are illustrated along with the analytical solution. 

3.1.2. Analysis of NetTE for the Bivariate AR Model 

Since we are mainly interested in the direction of the information flow, we show that the estimation 

of the NetTE values exhibit more quantitative similarity among the methods for the case where  

k = l = 1 (Figure 10). 

 

Figure 10. This figure illustrates the NetTE difference, given by Equation (27) between each 

pair of variables in Equation (24). Estimations are performed using all three methods and 

considering different β values in the case of the Generalized Knuth method. 
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In the KDE (Figure 5A), Adaptive partitioning (Figure 6) and the Generalized Knuth method with ߚ = 0.1 and ߚ = 0.5,	(Figures 8 and 9) a non-zero  is observed. The NetTE between the variables 

X and Y of the bivariate auroregressive model in Equation (24) still behaves similarly giving a net 

information flow in the direction of the coupling from Y to X as expected. Thus, in this case we find that 

the NetTE behaves in the same way, even though the individual TE estimates of each method have 

different biases. Above, we observe that the NetTE estimate of the adaptive partitioning outperforms the 

Generalized Knuth method with ߚ = 0.1 and ߚ = 0.5 and KDE. The largest bias in NetTE is achieved 

by the Generalized Knuth method with ߚ = 10ିଵ. However, all methods agree that the information 

flow from Y to X is greater than that of X to Y, which is in agreement with the theoretical result obtained 

from Equation (24) using the equations in [19]. In the literature, the bias in the estimation has been 

obtained using surrogates of TE’s estimated by shuffling the data samples [38]. These approaches will 

be explored in future work. 

3.2. Lorenz System  

In this section, the three methods of Section 2 are applied to a more challenging problem involving 

the detection of the direction of information flow among the three components of the Lorenz system, 

which is a simplified atmospheric circulation model that exhibits significant non-linear behavior. The 

Lorenz system is defined by a set of three coupled first-order differential equations [41]: ݀ܺ݀ݐ = ܻ)ߪ − ݐܻ݀݀(ܺ = −ܼܺ + ܴܺ − ݐܼܻ݀݀ = ܻܺ − ܾܼ  (28)

where ߪ = 10, ܾ = 8 3, ܴ = ܾݑݏ)	24 − ܿℎܽ(ܿ݅ݐ	ݎ	ܴ = 28	(ܿℎܽܿ݅ݐ)⁄ . These equations derive from 

a simple model of an atmospheric convection cell, where the variables x, y, and z denote the convective 

velocity, vertical temperature difference and the mean convective heat flow, respectively. These 

equations are used to generate a synthetic time series, which is then used to test our TE estimation 

procedure. In the literature, the estimation of the TE of two Lorenz systems with nonlinear couplings 

have found applications in neuroscience [14,39,55]. Here, we explore the performance of our approach 

on a single Lorenz system which is not coupled to another one. Our goal is to estimate the interactions 

among the three variables of a single Lorenz system–not coupling from one system to another. 

In our experiments, we tested the adaptive partitioning, KDE and Generalized Knuth methods in the 

case where the Rayleigh number, R = 28, which is well-known to result in chaotic dynamics and also for 

the sub-chaotic case where R = 24. For each variable, we generated 15,000 samples and used the last 

5000 samples after the transient using a Runge-Kutta-based differential equation solver in MATLAB 

(ode45). Both in the chaotic and sub-chaotic cases, ߚ = 0.1 was used at the Generalized Knuth method 

and a 5% significance level was selected in the adaptive partitioning method. Embedding dimensions of 

k = l = 1 have been selected in these two methods. 

TEXY
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The embedding dimension values were implemented according to Section 2.3.2 at the KDE method: 

The log ߝ  versus log ൬ܥቀݔାଵ, ,()ܠ ;()ܡ ቁ൰ߝ  curves have been estimated for the chaotic and  

sub-chaotic cases. 

In the chaotic case, the first minimum of TLMI was found to be at k = 17 and ε = ݁ିଵ occured in the 

middle of the radii range of the linear part of the curve. The value of l = 1 was selected for both the 

chaotic and sub-chaotic cases. The curves for different k values have been illustrated in Figure 11 for the 

analysis of the interaction between X and Y. Similar curves have been observed for the analysis of the 

interactions between the other pairs in the model.  

In the sub-chaotic case, values around k = 15 have been observed to provide the first local minimum 

of TLMI(k). However, the NetTE direction consistency cannot be obtained with the other two 

techniques, namely, the adaptive partitioning and the Generalized Knuth method. Therefore, as we 

propose in our method, k value has been fine-tuned along with the radius until we obtain consistency of 

NetTE directions among the three methods. Selection of 	݇ = 3, ݈ = 1, ߝ = ݁ିଶ  has provided this 

consistency, where the NetTE directions are illustrated in Figure 15. Figure 12 illustrates log versus log ߝ ൬ܥቀݔାଵ, ,()ܠ ;()ܡ ቁ൰ߝ  curves used in the selection of the appropriate region for ߝ	 , in the  

sub-chaotic case. 

 

Figure 11. Exploration of the optimal radius for the KDE of a pdf using the Grassberger-

Procaccia method. The figure illustrates the Correlation Sum (22) estimated at different 

radius values represented by ε for the Lorenz model in the chaotic regime (R = 28). 
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Figure 12. Exploration of the optimal radius for the KDE of a pdf using the  

Grassberger-Procaccia method. The figure illustrates the Correlation Sum (22) estimated at 

different radius values represented by ε for the Lorenz model in the sub-chaotic regime  

(R = 24). 

We estimated TE for both directions for each pair of variables (ݔ, ,ݔ) ,(ݕ ,ݕ) and ,(ݖ  using each of (ݖ

the three methods described in Section 2. Similar to the MI normalization of Equation (26) recommended 

in [53], we adapt the normalization for the NetTE as follows: ߜ = ඥ1 − ݁ିଶ(ே௧்ாೊ) (29)

where ߜ denotes the normalized NetTE between variables X and Y, having values in the range of [0,1]. 

In Figures 13 and 14, we illustrate the information flow between each pair of the Lorenz equation 

variables using both the un-normalized TE values obtained by the each of the three methods and the 

normalized NetTE estimates showing the net information flow between any pair of variables.  
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Figure 13. The un-normalized TE estimates between the variables of the Lorenz equations 

defined in Equation (28) for the chaotic case (R = 28) along with the normalized NetTE 

direction and magnitudes. Estimations were obtained using (A) Kernel Density Estimate 

method with k = 17, l = 1,	ߝ = ݁ିଵ; (B) Generalized Knuth method method with ߚ = 0.1,݇ = ݈ = 1; and (C) Adaptive Partitioning method with 5% significance level and k = l = 1. 

Solid arrows denote the information flow (or TE) from X to Y or Y to X. Dashed lines show 

the direction of the normalized NetTE estimates. 

Above, the un-normalized TE values are denoted by solid lines between each pair of variables. Also, 

the normalized NetTE estimates (29) are illustrated with dashed lines. The direction of the NetTE has 

the same direction as the maximum of two un-normalized TE estimates between each pair, the 

magnitudes of which are shown in rectangles. For example, in the case of the adaptive partitioning 

method, the un-normalized TE values are estimated to be ܶܧ = −0.45 and ܶܧ = −0.50 between 

variables Y and Z, due to the biases originating from the subtraction used in Equation (21). However, the 

normalized NetTE is estimated to be ߜ = √1 − ݁ିଶ(ே௧்ா) = √1 − ݁ିଶ(ି.ସହି(ି.ହ)) =	 0.31 and 

shows a net information flow from variable Y to Z. Thus, we conclude that variable Y affects variable Z. 

In Figure 14, we illustrate the estimates of TE’s between each variable of the Lorenz Equation (28) 

in sub-chaotic regime with R = 24. 

Above, we demonstrated the concept of our method: If the directions of information flows are not 

consistent with the three methods, then we can explore new parameter values to provide consistency in 

the directions. Above, for the selected parameters, the Generalized Knuth method and the adaptive 

partitioning provided consistent NetTE directions between the pairs of variables in the chaotic case. 

However, in the sub-chaotic case, we needed to explore a new parameter set for the KDE method as the 

NetTE directions were different than the other two consistent methods. 

Based on the fact that the directions of the NetTE estimations obtained using each of the three methods 

agree, we conclude that information flow direction between the pairs of the Lorenz equation variables 

are as shown in Figure 15. 
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Figure 14. The un-normalized TE estimates between the variables of the Lorenz equations 

defined in Equation (28) for the sub-chaotic case (R = 24) along with the normalized NetTE 

direction and magnitudes. Estimations were obtained using: (A) Kernel Density Estimate 

method with ݇ = 3, ݈ = 1, ߝ = ݁ିଶ ; (B) Generalized Knuth method where ߚ = 0.1,		݇ = ݈ = 1; (C) Adaptive Partitioning method with 5% significance level and k = l =1. Solid 

arrows denote the information flow (or TE) from X to Y or Y to X. Dashed lines illustrate the 

direction of the normalized NetTE estimates. 

 

Figure 15. Information flow directions among the variables of the Lorenz equations, where 

X, Y, Z denote the velocity, temperature difference and the heat flow, respectively, in the 

case of the atmospheric convection roll model. These are also the NetTE directions, showing 

the larger influence among the bi-directional flows. 

Note that these information flow directions are not only not obvious, but also not obviously 

obtainable, given the Lorenz system equations in Equation (28) despite the fact that these equations 

comprise a complete description of the system (sensitive dependence on initial conditions not 

withstanding). However, given the fact that this system of equations is derived from a well-understood 

physical system, one can evaluate these results based on the corresponding physics. In an atmospheric 

convection roll, it is known that both the velocity (X) and the heat flow (Z) are driven by the temperature 

difference (Y), and that it is the velocity (X) that mediates the heat flow (Z) in the system. This 

demonstrates that complex nonlinear relationships between different subsystems can be revealed by a 

TE analysis of the time series of the system variables. Furthermore, such an analysis reveals information 

about the system that is not readily accessible even with an analytic model, such as Equation (28), in hand. 
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4. Conclusions 

Complex systems, such as the Earth’s climate, the human brain, and a nation’s economy, possess 

numerous subsystems, which not only interact in a highly nonlinear fashion, but also interact differently 

at different scales due to multiple feedback mechanisms. Analyzing these complex relationships in an 

attempt to better understand the physics underlying the observed behavior poses a serious challenge. 

Traditional methods, such as correlation analysis or PCA are inadequate due to the fact that they are 

designed for linear systems. TE has been demonstrated to be a potentially effective tool for complex 

systems consisting of nonlinearly-interacting subsystems due to its ability to estimate asymmetric 

information flow at different scales, which is indicative of cause and effect relationships. However, there 

are serious numerical challenges that need to be overcome before TE can be considered to be a 

dependable tool for identifying potential causal interactions. In response to this, we have developed a 

practical approach that involves utilizing three reasonably reliable estimation methods together. Instead 

of fine tuning the specific parameters of each method blindly, we find a working region where all three 

methods give the same direction of the information flow. In the case of collective agreement, we 

conclude that the individual tuning parameters for each method are near their optimal values. This was 

demonstrated on a bivariate linearly-coupled AR process as well as on the Lorenz system in both the 

chaotic and sub-chaotic regimes. Our success in deciphering the direction of information flow in the 

Lorenz system verified—not by the Lorenz system of differential equations—but rather by considering 

the known underlying physics suggests that this approach has significant promise in investigating and 

understanding the relationships among different variables in complex systems, such as the Earth’s climate. 

Appendix 1 

In this Appendix we illustrate, via numerical simulation, the sensitivity of TE estimates on the number 

of bins used in a histogram model of a pdf. Consider the coupled autoregressive process: ݕ(݅ + 1) = (݅)ݕ0.5 + ݊ଵ(݅)ݔ(݅ + 1) = (݅)ݔ0.6 + (݅)ݕܿ + ݊ଶ(݅) (A.1.1)

where n1 and n2 are samples of zero mean and unit variance in Gaussian distributions, and c represents 

the coupling coefficient that couples the two time series equations for x and y. Here, TEXY = 0, as the 

coupling direction is from Y to X (due to the coupling coefficient c). It was demonstrated by Kaiser and 

Schreiber ([19]) that the TE can be analytically solved for this system. By choosing the coupling 

coefficient to be c = 0.5, one finds TEYX = 0.2. Numerical estimates of TE were performed by considering 

11 datasets with the number of data points ranging from 10 to 1000. Eleven histograms were constructed 

for each dataset with the number of bins ranging from 2 to 100, and from these histograms the relevant 
Shannon entropies were computed. Figure A1.1 illustrates the normalized  values, which are 

computed using the Shannon entropies in (17), for each combination of N data points and M histogram 

bins considered. First, note that the estimated TE values range from below 0.1 to above 0.5 where the 

correct TE value is known to be 0.2 demonstrating that the TE estimates are highly dependent on both 

the number of data points and the number of bins. Second, note that there is no plateau where TE 

estimates remain approximately constant—not to mention correct—over a range of histogram bin 

numbers. For this reason, it is critical to select the correct number of bins in the histogram model of the 

TEYX
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pdf. However, this is made even more difficult since the entropy is a transform of the model of the pdf 

itself and therefore the number of bins required to produce the optimal model of the pdf will not be the 

same as the number of bins resulting in the optimal entropy estimate. This is explored in Appendix 2. 

  

Figure A.1. This figure illustrates the numerically-estimated normalized transfer entropy, 

TEYX, of the autoregressive system given in (A.1.1) as a function of varying numbers of data 

points and histogram bin numbers. To normalize TE, (29) was used as given in the text. 

Given that the correct value of the transfer entropy is TEYX=0.2, this figure illustrates that 

the estimation of TE is extremely sensitive to the number of bins chosen for the histogram 

model of the pdf of the data. (k = l = 1). 

Appendix 2 

The differential entropy of a variable is estimated by Equation (14). However, due to the  

finite-precision of numerical calculations in a digital computer, the integral in Equation (14) is 

approximated by the following discrete summation:  

ℎ(ܺ) ≈ (ݔ)ܪ =(ݔ)̂[log (ݔ)̂ − log݉(ݔ)]ெ
ୀଵ  (A.2.1)

where M denotes the total number of bins used in the histogram and (ݔ)̂  is the estimate of the 

continuous pdf of variable X. The Lebesgue measure, m(x), used above is chosen to be the volume V of 

each bin. Equation (A.2.1) can easily be written for the joint entropies, where (ݔ)̂ is replaced by its 

joint pdf counterpart and the volume is estimated for a multi-dimensional bin. In the one-dimensional 

case, the range of the variable x, is divided into bins, which is selected to be optimal in  

Equation (12), and the volume is given by ݉(ݔ) = ܸ = ቀ୫ୟ୶(௫)ି୫୧୬	(௫)ெ ቁ. We show that the entropy 

calculation by A.2.1 is biased.  

The entropy of the standard Gaussian distribution ࣨ(0,1) with zero mean and unit variance can be 

analytically computed to be approximately 1.4189. We numerically generated 100 Gaussian-distributed 

datasets, each with 1000 data points, by sampling from ࣨ(0,1). Given these 100 datasets, we estimated 

the 100 corresponding entropy values using the Generalized Knuth method with ߚ = 0.5. We found that 

M̂
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76% and 91% of the entropy estimates were within 1 or 2 standard deviations, respectively, of the true 

entropy value of 1.4189. However, this means that not every attempt at entropy estimation in this 

ensemble was successful. 

We illustrate this with a specific data set that was found to lie outside of 76% percentile success rate. 
In this case, the optimal number of bins was estimated to be ܯ௧ = 11  using Equation (12). In  

Figure A.2.1a,b, we illustrate the resulting histogram model of the pdf and the non-normalized log 

posterior probability of the number of bins in the model given the data. 

 

Figure A.2.1. (a) Histogram model of the pdf of the data set with error-bars on the bin 

heights; (b) The non-normalized log posterior probability of the number of bins in the model 

given the data. 

In Figure A.2.2, we illustrate the entropy estimates for this data set as a function of the number of 

bins where the vertical bars denote one standard deviation from the mean. 

 

Figure A.2.2. Entropy estimate of a data-set outside of 76% percentile success rate (for one 

of the data-sets in the remaining 24% of 100 trials). 

Figure A.2.2 shows that the true value of the entropy does not fall into the one standard deviation 
interval of the mean estimate using ܯ௧ = 11, implying that the required number of bins is different 

for an optimal pdf model and an optimal entropy estimation. It is seen that M = 19 is the smallest number 
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of bins where the entropy estimate falls within this interval and has a very close log	(ࢊ|ܯ) value 

compared to that obtained for ܯ = 11 in Figure A.2.1.b.  

Appendix 3 

In Appendix 2, we estimated the entropy of a one-dimensional Gaussian variable using the 

Generalized Knuth method with the prior shown in Equations (8) and (9). We notice that, even in the 

one-dimensional case, some of the entropy estimates lie outside the confidence intervals. If we estimate 

the joint entropy of two variables or more, the quality of the estimation decreases further due to empty 

bins. To overcome this problem, we proposed a different prior Equation (13) and computed the 

percentages of the relevant entropy estimates falling into 1 and 2 standard deviations (sigma’s) within a 

total of 100 data-sets sampled from the same two-dimensional Gaussian distribution given by ܰ ቀቂ00ቃ , ቂ 1 0.50.5 1 ቃቁ  versus ߚ = [0.001,0.01,0.05,0.1,0.3,0.5,0.7,1] . Figure. A.3 illustrates these 

percentages as a function of different β values. Approximately 50% of the time, the marginal entropy 

estimate falls into the one-sigma interval for ߚ = 0.05, and 80% of the time within the two-sigma 

interval (compare the first and second columns of Figure A.3). As a comparison, the corresponding 

statistics are approximately 10% for the marginal entropies falling into the one-sigma and 30% for 

marginal entropies falling into the two-sigma confidence intervals when we use the Krichevsky-Trofinov 

Dirichlet prior (ߚ = 0.5), as in Equation (8) above. It is also observed that in both cases, the confidence 

interval statistics are lower for the joint entropies, due to the increase of the dimensionality of the space. 

As a result of this analysis, we observe the largest percentage of getting an entropy estimate within its 

one-sigma and two-sigma intervals from the true values take place for ߚ = 0.1. 

 

Figure A.3. Percentage performance (one- and two-standard deviation confidence intervals) 

of marginal and joint entropy estimates as a function of ߚ. 

Above, both joint and marginal Shannon entropies of 100 Gaussian-distributed data-sets are estimated 

using the Generalized Knuth method for the illustrated ߚ values. Subfigures denote the percentage of 

estimates within one- and two- standard deviations from their analytical values. 
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