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ABSTRACT

The authors examine the daytime precipitation characteristics of the International Satellite Cloud

Climatology Project (ISCCP) weather states in the extended tropics (358S–358N) for a 10-yr period. Themain

precipitation dataset used is the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation

Analysis operational product 3B42 dataset, but Global Precipitation Climatology Project daily data are also

used for comparison. It is found that the most convectively active ISCCP weather state (WS1), despite an

occurrence frequency below 10%, is the most dominant state with regard to surface precipitation, producing

both the largest mean precipitation rates when present and the largest percent contribution to the total

precipitation of the tropics; yet, even this weather state appears to not precipitate about half the time,

although this may be to some extent an artifact of detection and spatiotemporal matching limitations of the

precipitation dataset. WS1 exhibits a modest annual cycle of the domain-average precipitation rate, but

notable seasonal shifts in its geographic distribution. The precipitation rates of the other weather states

appear to be stronger when occurring before or after WS1. The precipitation rates of the various weather

states are different between ocean and land, withWS1 producing higher daytime rates on average over ocean

than land, likely because of the larger size and more persistent nature of oceanic WS1s. The results of this

study, in addition to advancing the understanding of tropical hydrology, can serve as higher-order diagnostics

for evaluating the realism of tropical precipitation distributions in large-scale models.

1. Introduction

Cloud processes are crucial to the water and energy

cycle. Atmospheric heating rates (due to radiative and

thermodynamical processes), surface energy budgets

(radiative and turbulent), and precipitation rates have

strong dependencies on cloud properties and their
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frequency of occurrence. While the average effect of

clouds can be studied in aggregates, grouping the mul-

titude of observed cloud systems into discernible cloud

regimes and studying associated energy and water

budgets can be a far more useful approach for un-

derstanding the potential impact of cloud changes on

future budget distributions. An additional advantage of

such a holistic approach is that more physically based

diagnostics for evaluating global climate model hydro-

logical and radiative processes can be formulated.

A number of recent studies have focused on the topic

of objectively identifying distinct cloud regimes. The

criterion commonly used for identifying cloud regimes is

the covariation of cloud location (expressed as cloud-top

height or pressure) and extinction (expressed as cloud

optical thickness or reflectivity). Cloud mixtures exhib-

iting certain patterns in the covariation of these quan-

tities can be identified as distinct cloud regimes. These

patterns emerge from either neural network or k-means

clustering techniques, with the latter generally being

easier to implement and therefore more popular (Jakob

and Tselioudis 2003; Rossow et al. 2005; Zhang et al.

2007; Gordon and Norris 2010; Greenwald et al. 2010).

The search for patterns can be performed on either

a global dataset of joint height-extinction variations or on

distinct climatic zones. The breakdown by climatic zone is

thought to have the advantage that cloud regime identi-

fication can be fine-tuned so that cloudmixtures that may

have otherwise been obscured in a larger dataset can

emerge in a more geographically targeted analysis. It also

allows for examining (dis)similarities between different

parts of the globe with regard to the presence and oc-

currence frequency of different cloud mixtures. With the

regimes identified, a variety of properties other than

those used to define them can be easily compiled.

A compelling question is whether distinct behaviors of

cloud regimes in weather and climate can be established. If

the atmospheric conditions under which particular cloud

regimes form indeed have identifiable features, it should

be possible to associate changes in meteorological condi-

tions with changes in hydrology and energetics through

these regimes. Studies along such lines have been con-

ducted in recent years. Several previous studies (Jakob

et al. 2005; Williams and Webb 2008; Oreopoulos and

Rossow 2011; Haynes et al. 2011) have focused on the

radiative characteristics of cloud regimes. Other studies

have concentrated on precipitation characteristics. For

example, Jakob and Schumacher (2008) combined cloud

regimes, inferred from International Satellite Cloud Cli-

matology Project (ISCCP; Schiffer and Rossow 1983)

cloud retrievals, with collocated precipitation and latent

heating data from the Tropical Rainfall Measuring Mis-

sion (TRMM) Precipitation Radar in the tropical western

Pacific. By compositing the TRMM precipitation amount

and type into the ISCCP regimes, they were able to dis-

tinguish between three major precipitation regimes and to

identify their surface precipitation rates and latent heat

profile characteristics. Tromeur and Rossow (2010) found

that while the most convectively active cloud regime

dominated by organized deep convection dwarfed the

precipitation rate of all other regimes in the6158 latitude
zone, the regime representing unorganized convection

with a much lower average precipitation rate had nearly

the same contribution, because it occurred much more

frequently. Lebsock et al. (2010) examined the sensitivities

of tropical ocean, top-of-atmosphere radiative fluxes [from

Clouds and theEarth’s Radiant Energy System (CERES)]

to changes in precipitation [from the Advanced Micro-

wave Scanning Radiometer for Earth Observing Sys-

tem (AMSR-E)] for six different cloud regimes derived

from Moderate Resolution Imaging Spectroradiometer

(MODIS) joint histograms of cloud-top height and optical

thickness similar to those by ISCCP. Zhang et al. (2010)

defined cloud/precipitation regimes in the tropics from

profiles of CloudSat/Cloud–Aerosol Lidar and Infrared

Pathfinder Satellite Observations (CALIPSO) radar/lidar

reflectivities and hydrometeor locations and then com-

pared these with the corresponding regimes of a global

climate model operating in weather forecast mode.

In this paper we conduct a more extensive and de-

tailed analysis of the precipitation of tropical (6358
latitude zone) cloud regimes [henceforth referred to as

‘‘weather states’’ (WSs) as in Rossow et al. (2005), who

argued about their close association with distinct at-

mospheric conditions; see also Jakob and Tselioudis

2003; Jakob et al. 2005; Gordon andNorris 2010]. One of

our goals is to affirm that the mesoscale weather states

identified by ISCCP help in the understanding of tropi-

cal precipitation characteristics. We accomplish this by

examining the mean magnitude and range of the surface

precipitation rate produced by the weather states, their

relative contribution to the total precipitation of the

tropics, and the geographical distribution of their pre-

cipitation. We also seek to further specify the degree to

which the most convectively active weather states domi-

nate the tropical precipitation, a topic also investigated

by Rossow et al. (2013) using an alternate analysis ap-

proach. Our results are featured in section 4, which is

broken into subsections that highlight different aspects

of the precipitation–weather state relationship. We discuss

means, geographical variations, and frequency distribu-

tions of each weather state’s precipitation rates, and de-

pendencies on the precipitation dataset used. We pay

particular attention to the strongest precipitating weather

state, specifically its seasonal precipitation variations

compared to other convective states, and its close
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association with the apparent precipitation of other

weather states occurring in close temporal proximity.

2. Datasets used in this study

Our study uses three data sources: the ISCCP weather

states for the extended tropics (Oreopoulos and Rossow

2011) to identify cloud regimes, and two precipitation

products—the TRMM Multisatellite Precipitation Anal-

ysis operational product 3B42 (TMPA-3B42; Huffman

et al. 2010) and 1-Degree Daily Global Precipitation Cli-

matology Project (GPCP-1DD; Huffman et al. 2001).

A detailed description of the procedure that generates

the ISCCP weather state product is provided by Rossow

et al. (2005). Briefly, a search for distinctive patterns is

conducted in the joint frequency distributions of cloud-top

pressure (pc) and cloud optical thickness (t) constructed

from individual daytime satellite image pixel retrievals

(fields of view about 5 km in size) within 2.58 regions

provided in the ISCCP D1 dataset (Rossow and Schiffer

1999). Cluster centroids representing specific histogram

patterns describing cloud variability are identified using

the ‘‘k-means’’ clustering algorithm (Anderberg 1973).

A weather state dataset derived as described above for

three geographical zones between 658S and 658N is now

available for the period 1983–2008. The dataset is avail-

able online (ftp://isccp.giss.nasa.gov/outgoing/PICKUP/

CLUSTERS/data/1983-2008/). Here, we use the data

corresponding to the so-called extended tropical/

subtropical zone between 358S and 358N, ISCCP da-

taset D1.WS.ET.dat. This dataset has been previously

used by Mekonnen and Rossow (2011) and Oreopoulos

and Rossow (2011). The optimal cluster centroids are

shown in Fig. 1, while maps of the weather state relative

frequency of occurrence (RFO) are provided in Fig. 2.

The weather state indexes were assigned according to the

classical understanding of expected convective activity

strength, with indexes increasing progressively toward

FIG. 1. Cluster centroids for the eightWSs of the extended tropics geographical zone (358S–358N) derived from ISCCPD1 data. Each plot

shows the normalized frequency of occurrence (in%) within pc- t bins. A rough description by the dominant cloud regime is as follows:WS1

corresponds to organized deep convection, WS2 to anvils, WS3 to unorganized deep convection, WS4 to cirrus mixed with some cumulus,

WS5 to stratus/stratocumulus, and WS6–WS8 to shallow convection with various degrees of overlying cloudiness and convective intensity.
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the more convectively suppressed weather states. Note

that this indexing convention follows Rossow et al. (2005),

but is opposite to that of Haynes et al. (2011).

The weather state data are analyzed jointly with two

precipitation datasets for a 10-yr overlapping period

from January 1998 to December 2007. One is based on

the Tropical Rainfall Measuring Mission Multisatellite

Precipitation Analysis algorithm, which seeks to pro-

vide a ‘‘best’’ estimate of quasi-global (508S–508N)

precipitation from the wide variety of modern satel-

liteborne precipitation sensors in conjunction with gauge

measurements where feasible. Estimates are provided at

relatively fine scales, namely 0.258 3 0.258, 3-hourly
(Huffman et al. 2007, 2010). We use the postprocessed

research product that relies on calibration by the TRMM

Combined Instrument (TCI) product and covers the

period from January 1998 to present. The research

product system has been developed as the version-6

FIG. 2. The geographical distribution of the RFOs of the eight WSs of the extended tropics

geographical zone for the period 1998–2007. Values are normalized relative to the total number

of WS occurrences with valid TMPA-3B42 precipitation measurements within the geo-

graphical area for this period.
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algorithm for the TRMM operational product 3B42

(3B42 V.6, henceforth TMPA-3B42).

The other precipitation product is the GPCP-1DD

version 1.1 precipitation product, which was developed

to support the Global Precipitation Climatology Project

established by theWorld ClimateResearch Programme to

quantify multiyear global distributions of precipitation.

The product provides 1-day (daily) precipitation estimates

on a 18 grid over the entire globe for the period from

October 1996 to present. The GPCP-1DD product is a

complement to the GPCP version 2 Satellite-Gauge (SG)

combination product (Adler et al. 2003). GPCP-1DD uses

data from geostationary-satellite infrared sensors to com-

pute the threshold-matched precipitation index (TMPI)

and to provide precipitation estimates on a 18 3 18 grid at

3-hourly intervals within the 408N–408S latitude zone. The

TMPI sequence of instantaneous 3-hourly estimates is

summed to produce the daily value. Estimates outside this

latitude zone (not used in this study) are computed based

on recalibrated Television and Infrared Observation Sat-

ellite Operational Vertical Sounder data from polar-

orbiting satellites (Susskind et al. 1997). Additionally,

the GPCP-1DD product is scaled in both data regions

to match themonthly accumulation provided by the SG

product, which combines satellite and gauge observa-

tions at a monthly time scale on a 2.58 3 2.58 grid.
Although a definitive assessment of the accuracy of the

above two precipitation datasets over the full range of

precipitation values is not available, it is generally un-

derstood that low values of precipitation are often

underestimated or missed altogether. The products have

nevertheless shown a reasonable agreement in histogram

comparisons with surface-based measurements like the

Mesonet network of rain gauges in Oklahoma (GPCP-

1DD; Huffman et al. 2001) and Precipitation Radar in the

western tropical Pacific (TMPA-3B42; Huffman et al.

2010). Although systematic errors (biases) remain a con-

cern, this is not the case for random errors that are neg-

ligible because of the large number of data points used in

the analysis. For example, for the least frequently ob-

servedweather state,WS6,;2million precipitating points

were available, while for the most frequently observed

weather state,WS8,;17 million precipitating points were

analyzed. These large numbers translate to minute errors

for the mean precipitation rate, spanning ;0.002–

0.01 mm day21 for the full range of weather states.

3. Analysis method

The analysis method is fairly straightforward and ba-

sically consists of compositing the precipitation data as

a function of the weather state. The D1.WS.ET.dat file

contains the weather state index in each 2.58 grid cell for

every daytime 3-h interval. Because of their different

temporal and spatial resolutions, the two precipitation

datasets have to be treated differently in the compositing

process. The 3-h resolution of the TMPA-3B42 data al-

lows a certain degree of temporal matching with the

ISCCP weather state data that is never worse than 3 h.

Spatial matching to the 2.58-resolution ISCCP weather

state data is achieved by taking themean of all nonmissing

(i.e., including zero values) 0.258 precipitation data that

fall into the 2.58 grid cell. GPCP data, on the other hand,

are resampled from 18 to 2.58 via spatial interpolation.

For each 3-h time period, the TMPA-3B42 data are

segregated by weather state to calculate the state’s pre-

cipitation statistics.However, something analogous cannot

be done for the daily averaged GPCP-1DD precipitation

data. We therefore pursue two avenues for segregating

and compositing GPCP-1DD data: (i) we assign the same

daily precipitation rate to all weather states encountered

during the daytime period in a grid cell, or (ii) we only

consider those grid cells for which the same weather state

persists during a day’s daylight hours and assign the cor-

responding GPCP-1DD daily precipitation rate.

Given the above, only TMPA-3B42 composited pre-

cipitation can be treated as approaching daytime (i.e.,

during sunlit hours) precipitation. Because the temporal

matching with the ISCCP weather states is better, most

of our analysis relies on TMPA-3B42 precipitation data.

The availability of GPCP-1DD precipitation rates even

without the temporal resolution of TMPA-3B42 still

offers, however, useful insight into certain aspects of

weather state precipitation, as will be shown below. To

have at our disposal two precipitation composites that

are more comparable, we also segregate TMPA-3B42

precipitation as in method (ii) of GPCP-1DD compos-

iting, that is, we consider the daily averaged TMPA-

3B42 precipitation rates of only those grid cells where

the same weather state persists during daytime.

As will be shown in the next section, precipitation data

that have been segregated by weather state can be sub-

sequently analyzed in terms of the range and variability of

precipitation rates, geographical distributions, relative

contributions to the precipitation budget, and other

characteristics that help us form a more complete picture

about tropical precipitation.

4. Characteristics of tropical weather state
precipitation

In this section we identify the relative importance of

the various weather states to the tropical precipitation

budget, examine the variability of their precipitation rates

and the degree to which they are hydrologically distinct,

investigate whether a weather state’s precipitation is
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affected by the state that temporally adjoins it, examine

the sensitivity of the results to the precipitation dataset

used, and perform an analysis on the seasonal and geo-

graphical precipitation characteristics of the three most

convectively intense weather states.

a. Means and geographical distributions of
TMPA-3B42 precipitation

The geographical distribution of the 10-yr TMPA-

3B42 daytime precipitation–rate means (including zero

rates) at the time of occurrence is shown in Fig. 3 for

each weather state. It is immediately obvious that

ISCCP joint histogram clustering succeeds in isolating

the most intensively precipitating weather state, WS1,

representing deep convective regimes with frequent

occurrences of high, optically thick clouds (Fig. 1).

WS1’s mean precipitation rate indeed dwarfs that of any

other weather state in the tropics [consistent with the

findings of Tromeur and Rossow (2010)], with vast re-

gions of the tropical Pacific and Atlantic Oceans ex-

hibiting mean annual precipitation rates in excess of

25 mm day21. There are significant regional differences

in WS1 precipitation, such as smaller rates over the

Indian Ocean and weaker precipitation over land (dis-

cussed further below). Themean precipitation rates for the

remaining weather states generally decrease mono-

tonically with their assigned index, with WS2 (dominated

by convective anvils) and WS3 (representing cloud re-

gimes of frequent unorganized convection) producing

significant rates (albeit always lower than 10 mm day21 on

an annual basis) consistent with their implicit level of

convective activity. From the convectively suppressed

states [grouped together in the precipitation frequency

histograms of Rossow et al. (2013)] WS4 (dominated by

cirrus)–WS8 (shallow convection), WS8 is notable for

a stronger precipitation presence over land areas.

To gauge the hydrological importance of a weather

state in the tropics, its contribution to the total pre-

cipitation of the entire region is also calculated. These

results are shown in Fig. 4, as percentage contributions of

each weather state to the total gridcell precipitation. Two

important points need to be kept in mind when inter-

preting these figures. First, the contribution of each

weather state to the total gridcell precipitation is not only

a function of the mean precipitation intensity when the

state occurs, but also of its frequency of occurrence in the

particular cell. If, for example, one compares the top

panel of Fig. 3 with the top panel of Fig. 4 (WS1) there is

not much spatial correlation between the mean pre-

cipitation rate and contribution. This is because areas

where WS1 produces large precipitation rates are often

also areas whereWS1 rarely occurs. Second, areas where

a particular weather state appears to be a major

contributor are not necessarily areas where large pre-

cipitation totals occur. In other words, the fractional

contribution of a state may be large, but with low total

gridcell precipitation, the absolute amounts of pre-

cipitation involved are small even for the largest weather

state contributor. An example of this is WS3 exhibiting

a small precipitation amount, but still being the largest

contributor of precipitation off the west coast of South

America, a generally dry area (Fig. 3). In short, the

comparison of Figs. 3, 4 reveals that for precipitation,

large averages do not necessarily arise from large-rate

events, and that the opposite can also be true; large av-

erages can come from relatively few large-rate events.

The domain-average annual daytime mean precipita-

tion rate and fractional contribution of each weather

state to the total tropical precipitation from TMPA-

3B42 are shown in Fig. 5. To facilitate the interpretation

of the fractional contribution, the domain-average an-

nual RFO is also included in the graph. One can see that

despite an RFO of only;6%,WS1 contributes about half

of the total precipitation in the6358 latitude zone. This is
because themean precipitation rate of;19 mm day21 for

this state is more than 4 times larger than that of the next

strongest precipitating weather state (WS2). Still, WS2,

along with WS3, is a significant precipitation contrib-

utor, collectively contributing about 34% of the tropical

precipitation (i.e., about 67% of the precipitation that

does not come from WS1). The most frequent state,

WS8, with an RFO ;38% contributes less than 8%

to the tropical precipitation budget because of its

second-smallest (after WS7) mean precipitation rate of

;0.6 mm day21.

Figure 6 breaks down the results of Fig. 5 into land and

ocean domain averages. A 2.58 grid cell is defined as

‘‘land’’ when it contains less than 25% water, ‘‘ocean’’

when it is more than 75% water, and ‘‘mixed’’ in all

other cases. According to this convention, 23.1% of 2.58
grid cells in our latitude zone are land, 71.4% are ocean,

and the remaining 5.5% are mixed. The most striking

finding of the land–ocean breakdown is that the mean

precipitation rate of WS1 is significantly higher over

ocean (21 mm day21) than over land (14 mm day21).

This land–ocean contrast is also reproduced when

GPCP-1DD data are used in place of TMPA-3B42 (not

shown). The difference seems too large to be attribut-

able solely to algorithmic differences in the precipitation

retrieval fundamentals over land and ocean, such as the

different physics of microwave estimates and the absence

of surface gauges over the ocean. A possible contributor

to the differences could be the drier environment of

continental convection causing the evaporation of a sig-

nificant fraction of the precipitation before it reaches the

ground. This phenomenon, discussed by Geerts and
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Dejene (2005), who noted radar reflectivity profiles

peaking at high altitude and decreasing toward the ground

in Africa, would be captured by the TMPA-3B42 and

GPCP-1DD datasets because of the surface gauge re-

scaling employed.

We believe, however, that themain reason for the land–

ocean contrast in WS1 precipitation rates is that the oce-

anic WS1 systems are bigger and slower (e.g., Machado

and Rossow 1993; Hodges and Thorncroft 1997; Machado

et al. 1998), thus producing greater mean precipitation

rates even if less intense locally. To investigate the

possibility of bigger oceanic WS1 systems, we examined

whether fewer (compared to continental WS1) TMPA-

3B42 zero values contributed to the 2.58 gridcell pre-
cipitation rate value, the underlying assumption being

that fewer zeros indicate larger systems. We found that

this was indeed the case, and furthermore, when the

tropical domain WS1 average was calculated from only

FIG. 3. Geographical distribution of the 10-yr mean precipitation rate (mm day21) from the

TMPA-3B42 dataset for each of ISCCP’s eight extended tropics WSs.
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nonzero TMPA-3B42 precipitation values, the oceanic

and continental daytime mean precipitation rates were

very similar (not shown). For WS2 and WS3 we actually

found larger means over land than ocean by employing

this selective averaging of nonzero TMPA-3B42 values.

So, it appears that precipitation from convective systems

(WS11WS21WS3) is locally stronger over land, but is

also spatially more confined. We also examined the

‘‘slowness’’ ofWS1 in terms of temporal persistence.We

calculated the relative likelihood that if a weather state

appears in a grid cell at a certain time, the same state will

again be encountered in the same grid cell 3 or 6 h later

(Fig. 7). We carried out the analysis separately over land

and ocean and found that for both 3- and 6-h lags, the

relative frequency of situations where WS1 persists is

greater for ocean than over land (negative values for the

WS1–WS1 pair in Fig. 7), indicating longer-lasting

(slower) systems over ocean. It is worthwhile noting that

FIG. 4. Geographical distribution of the fractional contribution to the total 10-yr TMPA-3B42

gridcell precipitation of each ISCCP extended tropics WS.
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it is WS2 for which the relative persistence contrast be-

tween land and ocean is the most pronounced, while for

WS3 persistence is smaller than in either WS1 or WS2.

Returning to Fig. 6, we also see that while the ranking

of the weather states with respect to their contribution to

the total precipitation is not different between ocean

and land, the relative contribution of the different

weather states to the continental or marine precipitation

budget exhibits some changes compared to the overall

values. For example, WS1 is a larger fractional con-

tributor to ocean precipitation than land precipitation,

the opposite is true for WS8, and WS2 and WS3 are

more on par in ocean precipitation contribution than in

land precipitation contribution. Differences in the rel-

ative fractional contribution between land and ocean

can be the combined outcome of changes in both mean

precipitation intensity andRFO. ForWS1we see that the

RFO over ocean and land is about the same (0.062 and

0.065, respectively) and the main factor making WS1

a larger relative contributor over ocean is mean WS1

precipitation rate being greater in oceanic grid cells. In the

case of WS3, where both the mean precipitation and the

RFO are substantially different between land and ocean,

but in opposite directions, it appears that the greater RFO

over land dominates the fractional contribution.

b. Comparisons between different datasets and
compositing approaches

We now examine global values of mean precipitation

rate and contribution when daily averaged GPCP pre-

cipitation is composited. Because of the coarser temporal

resolution of the GPCP dataset, additional assumptions

have to be employed for compositing, as explained earlier.

The comparison between TMPA-3B42 and GPCP-1DD

weather state precipitation is shown in Fig. 8. The top left

panel of this figure is the same as in Fig. 5, which shows the

domain-average daytime mean rate and contribution to

the total precipitation from our best compositing method

of TMPA-3B42 data always temporally matched within

3 h with ISCCPweather state data. The other panels show

results using the alternate compositing approaches dis-

cussed in section 3, necessitated by the daily average na-

ture of the GPCP-1DD dataset. The upper right panel

shows domain-average values obtained by assuming that

the GPCP-1DD precipitation is constant throughout the

day: all weather states identified during the sunlit period

of a grid cell are assigned the same value of precipitation,

namely the (spatially interpolated to 2.58) daily average

provided by GPCP-1DD. The lower left panel shows

values obtained using only those grid cells for which the

same weather state persists during the day’s daylight

hours. Presumably, for the grid cells satisfying the single–

weather state condition, the assumption of a constant

precipitation rate will be acceptable to some degree.

Note that close to the international date line daylight

hours may be split between two UTC days containing

GPCP-1DD data, so this area is underrepresented in

this form of conditional compositing. In the lower

right panel, the TMPA-3B42 data are composited the

same way, that is, using the daily averaged TMPA-

3B42 precipitation and only those grid cells with oc-

currences of a single weather state during the entire

sunlit period.

FIG. 5. Domain-average values of the mean precipitation rates

and fractional contributions shown in Figs. 3, 4. Also included is the

domain-average RFO of each WS.

FIG. 6. As in Fig. 5, but when TMPA-3B42 precipitation is

aggregated separately over (top) ocean and (bottom) land.
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The RFOs are comparable between the top panels of

Fig. 8 that use all weather state data and the bottom two

panels that use only the fraction of grid cells with the

same persistent weather state throughout the daytime.

The RFOs of the bottom panels increase relative to

those of the top panels for the states that have the largest

fractions of grid cells with a persistent daytime weather

state. This is most notable for WS8 (shallow convection

with frequent occurrences of overlying clouds), which

has an RFO of 0.383 when all the grid cells are ac-

counted for and anRFOof 0.528 when only the grid cells

with no daytime variability of weather state occurrence

are considered. Indeed, forWS8 the fraction of grid cells

of the latter type is 18.4%, larger than the counterpart

fraction of any other weather state. On the other hand,

the RFO of (weakly precipitating) WS7 (mostly sub-

tropical oceanic shallow convection) drops from;0.085

to 0.039 when implementing this screening because only

6.3% of grid cells (lowest of all weather states) con-

taining WS7 maintain this weather state for the entire

daytime period; in other words, WS7 rarely persists

during the daytime in the tropics. Overall, the fraction of

grid cells with a single weather state during daytime is

about 13%; that is, about 87% of data are discarded to

produce the bottom panels of Fig. 8.

Contrasting the top panels reveals that using the

GPCP-1DDdata and the constant daytime precipitation

assumption leads to a notably different picture of the

precipitation intensity and relative importance of the

three most convective states, compared to TMPA-3B42.

The precipitation rate of WS1 falls from ;19 to

;14.5 mm day21 and the fractional contribution from

0.49 to 0.33. In contrast, the mean precipitation rate and

fractional contribution of WS2 and WS3 increase: the

ratio ofWS2 andWS1 fractional contributions increases

from 0.32 for TMPA-3B42 to 0.60 forGPCP-1DD, while

the ratio of WS3 to WS1 fractional contributions in-

creases from 0.38 to 0.68. It appears therefore that when

WS2 or WS3 are observed in a grid cell on the same day

as WS1, the constant daytime precipitation assumption

assigns to WS2 and WS3 daily averaged precipitation

estimates inflated by the occurrence ofWS1 in the hours

before or after (this is further examined later). One can

of course view this mistaken assignment of precipitation

also from theWS1 perspective, with weaker precipitation

assigned to WS1 in grid cells where convectively weaker

states have also occurred during the same day. Such

misassignments also seem to be ‘‘benefiting’’ the con-

vectively suppressed states WS4–WS8, making them ap-

pear as somewhat stronger precipitation producers and

contributors according to GPCP-1DD compared to

TMPA-3B42.

As pointed out earlier, one can attempt to bring the

two precipitation datasets to a more equal footing by

including in the compositing only the grid cells with

a single weather state during daytime. The results from

this analysis are shown in the bottom panels of Fig. 8.

The domain-average annual precipitation rates and

fractional contributions from the two satellite datasets

look in this case more similar when partitioned by

ISCCP weather state. Some differences remain, such as

the different relative contribution strengths of WS2 and

WS3, which are closer inGPCP-1DD than TMPA-3B42,

but the chief finding, WS1’s dominance, has now been re-

stored in GPCP-1DD to the same level as in TMPA-3B42.

The above analysis confirms the substantial daytime

variations in tropical precipitation indicated by previous

studies (e.g., Nesbitt and Zipser 2003). These variations

FIG. 7. Difference fromTMPA-3B42 in the relative likelihood of

occurrence between land and ocean (negative numbers indicate

that likelihood is larger over ocean) of a particularWS occurring at

(top) 3 h (T 1 3h) or (bottom) 6 h (T 1 6h) when another WS

occurs at time T. Our focus is on transitions between identical

states, represented by the values on the diagonal.

1 FEBRUARY 2013 LEE ET AL . 781

Unauthenticated | Downloaded 03/23/22 03:38 PM UTC



can affect the outcome of compositing a daily averaged

product like GPCP-1DD to a considerable extent.

c. Distributions of weather state precipitation rates

So far we have been examining only the mean annual

precipitation of the ISCCP weather states either on a

domain average or regional scale. We will now attempt

to gain a better understanding of the range and variability

of a state’s precipitation using cumulative precipitation-

rate histograms. Rossow et al. (2013) discuss in detail

other ways of constructing conditional precipitation his-

tograms and their dependence on spatial gridding.

Four sets of cumulative histograms are shown in Fig. 9,

with each panel corresponding to the same dataset and

compositing assumptions as in Fig. 8. The cumulative

frequencies are normalized relative to the number of

each state’s occurrences. The first bin is considered non-

precipitating and includes all precipitation values below

0.048 mm day21, the lowest precipitating value in the

original spatial resolution TMPA-3B42 dataset.

Once again, the top left panel of Fig. 9, based on

TMPA-3B42, corresponds to the best possible temporal

matching between weather state identification and pre-

cipitation. The first, perhaps surprising, feature seen in

this panel is that even the strongest precipitating state,

WS1, about half the time is not precipitating according

to TMPA-3B42. This large fraction of nonprecipitating

deep cloud systems, although consistent with previous

work like Casey et al. (2007), is probably an over-

estimation given the inherent weakness of the algorithm

in detecting light precipitation and our inability to ach-

ieve exact spatiotemporal matching with the datasets at

hand. But even if not as pronounced in the real world,

the frequent occurrence of apparently nonprecipitating

WS1 cloud systems reminds us that the ISCCP weather

states are only statistical descriptions of cloud regimes

that encompass a substantial variety of cloud mixtures.

These mixtures may include clouds with significantly

higher and lower than average cloud-top pressures and

optical depths, respectively, than the WS1 centroid, that

are yet more closely related to that cluster centroid

than any of the others. A cursory analysis with 1 yr of

ISCCP D1 data indicated that the average cloud-top

pressure and cloud optical depth of grid cells con-

taining WS1 was 317 hPa and 10.6 when TMPA-3B42

indicated no precipitation and 291 hPa and 13.5 when

precipitation was detected. This finding suggests signif-

icant height and extinction differences between non-

precipitating and precipitating WS1s. Variability among

tropical WS1s has also been implied in the results of

Fig. 6 in Oreopoulos and Rossow (2011) showing very

wide WS1 shortwave and longwave cloud radiative ef-

fect histograms. Finally, as indicated earlier, some zero-

precipitation WS1 occurrences may be due to space

and time mismatches: TRMM obtains an instantaneous

sample within a 3-h period and so does ISCCP, but they do

FIG. 8. (top left) As in Fig. 5. (top right) As in (top left), but using GPCP-1DD precipitation rates, assumed

constant throughout the day. (bottom left) As in (top right), but using only those grid cells with the same WS

occurring during daytime. (bottom right)As in (top left), but with precipitation diurnally averaged for those grid cells

with the same WS persisting during daytime.

782 JOURNAL OF CL IMATE VOLUME 26

Unauthenticated | Downloaded 03/23/22 03:38 PM UTC



not necessarily coincide within that time interval, with

possible separations of up to almost 3 h. Likewise, because

the ISCCP data are spatially sampled at 30 km, and

TRMM may not be looking at the same pixels, different

areas within the same grid cell may be captured by the two

datasets. Consider, for example, that in the WS1 centroid

of Fig. 1, ;70% of pc–t joint frequencies occur at pc .
440 hPa and t , 23 (i.e., outside the convective core) and

that TRMM observations may often be collocated with

ISCCP observations belonging to this much less likely to

precipitate portion of the joint histogram.

The fraction of nonprecipitating WS1 occurrences

drops dramatically when daily averaged precipitation

values are used (top right and bottom panels of Fig. 9).

This indicates that when WS1 appears in a grid cell at

some point during daytime, it is very likely that pre-

cipitation will occur at some time during the same day.

Indeed, regardless of what dataset or assumption is used

for compositing daily precipitation, there is never a

higher than 10% chance that a grid cell containing

WS1 will remain precipitation-free for the entire day.

An encouraging indicator of the consistency of our

analysis is the fact that despite the completely different

shape of theWS1TMPA-3B42 cumulative histograms in

the upper left and lower right panels of Fig. 9, the re-

sulting mean precipitation rates (upper left and lower

right panels of Fig. 8) are very close.

The frequency of nonprecipitating cloud mixtures

(with the spatiotemporal matching caveats mentioned

above) increases rapidly as one progressively moves

to the most convectively suppressed weather states.

For example, even for WS3, 86% of occurrences are

not associated with any precipitation according to

TMPA-3B42 (upper left panel of Fig.9). These fre-

quencies are again smaller when daily precipitation

averages are composited: the other three panels agree

that only ;45% of grid cells containing WS3 at some

point during daytime will remain precipitation-free

throughout the day.

At the high end of the precipitation distribution we note

from the top panel of Fig. 9 that while about 26%

of WS1 occurrences are associated with rain rates above

24mm day21, the corresponding percentage drops to about

7% for WS2, 4% for WS3, and more rapidly thereafter to

values below 0.5% for WS5–WS8. This part of the histo-

gram is changed less by the details of compositing. For

FIG. 9. Cumulative histograms of precipitation rate for each WS for the precipitation datasets and compositing

assumptions used in Fig. 7.
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example, the top right panel based on GPCP-1DD has

counterpart values for WS1–WS3 of 23%, 7%, and 3%,

indicating that strong precipitation also tends to be persis-

tent. The cumulative histograms of the last four weather

states form a group of histogram curves that is clearly dis-

tinct from the other states, also characterized by well-sep-

arated histograms. This is another piece of evidence

supporting our claim that the ISCCP weather states are

good classifiers of the various tropical precipitation regimes.

d. Dependence of precipitation on weather state
transitions

Another approach for assessing precipitation variability

within weather states is to examine whether a weather

state’s precipitation correlateswithwhich state precedes or

follows it. Intuitively, one would expect some correlation

because a particular state’s realization may have features

that depend on the state that precedes or follows and we

have a limited ability to spatiotemporally match the da-

tasets. For example, a cloudmixture classified asWS3may

have different features when it follows WS1 instead of

(probably more rarely) WS2 and may be assigned some of

the TMPA-3B42 values that actually belong to WS1.

Figure 10 shows the annual domain-averaged pre-

cipitation of a weather state as a function of the weather

state that either precedes (top panel) or follows (bottom

panel). Such an analysis can obviously only be per-

formed with the 3-hourly TMPA-3B42 dataset. For all

weather states, the mean precipitation rate is stronger

when the state is preceded or followed by WS1 (second

column from left). The frequency with which transitions

to or from WS1 happen is, of course, different for each

weather state and does not affect the values in the figure,

which simply correspond to the mean precipitation rates

when the state occurs. Interestingly, except for the case

where it is preceded or followed by itself, WS1 exhibits

the strongest precipitation when it is preceded or fol-

lowed by WS8 than any other case (second row from

bottom), including the ones that are convectively stron-

ger. The transition from WS8 to WS1 and vice versa is,

however, rare (not shown). One other interesting feature

seen in the bottom plot is that the mean precipitation

of WS2, WS3, and WS4 falls within the same range of

9–12 mm day21 when followed by WS1. This is espe-

cially surprising for WS4, which is a rather weakly pre-

cipitating state when the analysis is not conditional on

close temporal proximity to WS1. But when WS1 pre-

cedes, WS2 precipitates more than WS3 or WS4 (top

plot). These transition results make sense considering

the fact that the changing weather states simply repre-

sent different parts of the same storm system and the

possible temporal and spatial mismatches between

ISCCP weather state and TMPA-3B42 precipitation.

The great influence of transitions to or from WS1 can

also be quantified by examining the combined domain-

average precipitation rates of all weather states except

WS1. This domain average is 1.56 mm day21 in the

general case where the specifics of the preceding or

succeeding weather state are ignored, and 8.16 and

10.71 mm day21 whenWS1 precedes or succeeds any of

these weather states. Because of their lower values, the

precipitation characteristics of other combinations of

weather state transitions are inconsequential and are

therefore not discussed.

e. Seasonal variations of the most convective
weather states

Our analysis so far has clearly demonstrated thatWS1

is by far the most important weather state for tropical

FIG. 10. Mean TMPA-3B42 precipitation rate of each WS (with

‘‘0’’ designating cloud-free 2.58 cells, and gray squares indicating

nonexistent combinations) at time T as a function of the WS either

(top) 3 h earlier (T 2 3h) or (bottom) 3 h later (T 1 3h).
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precipitation, affirming the dominance of organized (WS1)

over single-plume deep convection (WS3) also shown

in Rossow et al. (2013). In this subsection we perform

additional analyses of WS1 precipitation characteristics,

focusing on seasonal and zonal variations and how they

contrast with their counterpart features in WS2 and

WS3. The seasonal variations of the other states’ pre-

cipitation were also examined but are not shown be-

cause both the precipitation rates themselves and their

relative seasonal variability are appreciably weaker.

From a domain-average perspective, even the WS1 an-

nual cycle of mean precipitation is not particularly

strong (Fig. 11), a result also found by Tselioudis and

Rossow (2011). The maximum value occurs in June, but

is only;6% higher than the annual mean; the minimum

value occurs in March, but is only ;4.5% below the

annual mean. Seasonal variations in the fractional con-

tribution relative to the annual mean are yet lower (2.5%

above the annual mean in October and 2.7% below the

annual mean in June are the highest deviations). This is

because months with relatively high precipitation rates

also have relatively low RFOs and vice versa. The sea-

sonal cycles of the domain-average WS2 and WS3 pre-

cipitation rate and fractional contributions are even

weaker (not shown).

Even though the seasonal variations of domain-average

WS1 precipitation are not strong, geographical distri-

butions vary significantly with season. Figure 12 shows

the zonal averages of total precipitation for the three

most convective weather states—WS1, WS2, and WS3—

in four seasons [December–February (DJF),March–May

(MAM), June–August (JJA), and September–November

(SON)], normalized by their respective domain-average

annual mean. This type of normalization illustrates not

only seasonal deviations from the annual mean, but also

FIG. 11. The 10-yr mean annual cycle of WS1 TMPA-3B42

precipitation rate when present, fractional contribution to domain

precipitation, and RFO.

FIG. 12. Seasonal variability of total zonal precipitation nor-

malized by the domain-averaged annual mean for (top) WS1,

(middle) WS2, and (bottom) WS3.
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geographical (zonal) deviations from the domain aver-

age. There are substantial zonal movements of WS1

precipitation in accordance with movements of WS1

occurrence (not shown). The band of deep convection

known as the ITCZ moves northward from DJF to JJA

and this is reflected in the northward displacement of

normalized WS1 and WS2 precipitation totals. This is

not the case for WS3, which exhibits little zonal move-

ment as seasons vary, although some seasonal changes in

specific areas such as India and Southeast Asia take

place (not shown). When seasonal maps of WS1 pre-

cipitation were examined (not shown), we noted that

this weather state produces the lowest precipitation to-

tals over Africa and South America in JJA and the

highest precipitation totals over South Asia, including

India and the Bay of Bengal. The eastern equatorial

Pacific WS1 precipitation was also stronger during JJA.

DJF marked the return of WS1 precipitation south of

the equator in Africa and South America, and high

precipitation totals were encountered in the South

Pacific convergence zone and the western part of the

Maritime Continent where WS1 occurrence peaks.

Thus, while WS1 (and WS2) precipitation totals for the

entire geographical zone do not change by much, the

zonal and meridional precipitation movements are quite

prominent and are the main drivers of seasonal vari-

ability in overall tropical precipitation. On the other

hand, for WS3, in addition to the domain average that

does not change much with season, the zonal structure

remains relatively unchanged as well.

5. Summary and discussion

We provide a comprehensive picture of the relation-

ship between ISCCP weather states (also called cloud

regimes by some authors) and precipitation for the en-

tire tropics (358S–358N), thus significantly expanding

upon prior studies that were geographically more lim-

ited. Our analysis relies on the concepts of conditional

sampling/sorting and composite averaging. By employ-

ing these concepts on two widely used merged (satellite

and surface) precipitation datasets, TMPA-3B42 and

GPCP-1DD, we gain insight on how the tropical pre-

cipitation budget is partitioned among the various

weather states identified by analyses of ISCCP-retrieved

cloud properties. We focus primarily on the TMPA-

3B42 precipitation dataset because it has the same 3-h

temporal resolution as the ISCCP weather states.

Given that weather states can only be identified during

daytime when cloud optical thickness from passive

visible observations is available, our findings, based on

10 yr of measurements, only apply to daytime pre-

cipitation. Compositing of GPCP-1DD data, on the

other hand, can be performed only on diurnally aver-

aged precipitation.

We find that the mixture of high and optically thick

clouds represented by the weather state with index ‘‘1’’

(WS1) in the ISCCP dataset and considered the most

spatially extensive and long-lived type of deep convec-

tion is associated with almost half the tropical pre-

cipitation, despite occurring only about 6% of the time.

This is because its mean precipitation rate at the time of

occurrence is about 19 mm day21, more than 4 times

larger than the second most convectively active state

(WS2), which happens to also have the second highest

mean precipitation rate. The presence of WS1 signifies

dynamical conditions that favor stronger precipitation

rates: the apparent precipitation of other weather states

occurring before or after WS1 in the same grid cell is

greater than average. It seems therefore that the precip-

itation of weather states occurring before or after WS1

reflects its influence on its convective progenitors or de-

scendants. But even this weather state appears to be

precipitation-free about half the time according to a fre-

quency distribution analysis of TMPA-3B42 precipitation

rates. This is likely an overestimate of rain-free occur-

rences given the limitations of the rain detection algo-

rithm when precipitation is light and the imperfect

spatiotemporal matching. Another feature of WS1

worth mentioning is that it exhibits the strongest sea-

sonal variability among all weather states, still relatively

weak on a domain-averaged basis, but with prominent

zonal variations that are closely tracked by WS2 (dom-

inated by anvils), but not by WS3 (unorganized con-

vection; the third most convectively active state). When

the precipitation data are composited separately over

land and ocean grid cells, differences emerge. WS1

precipitates more over ocean, possibly reflecting a com-

bination of factors like a more humid environment

preventing extensive evaporation of hydrometeors,

larger and slower-moving systems compared to land,

and the possibility of biases due to algorithmic differ-

ences in the ocean versus land precipitation retrievals.

Also, over land, the relative contribution ofWS3 to total

precipitation goes up significantly, reaching a value close

to half that of WS1 (over ocean the relative contribution

is closer to a quarter of that of WS1).

The choice of the precipitation dataset used in the

compositing affects the results noticeably. The GPCP-

1DD precipitation represents the gridcell diurnal aver-

age and cannot be combined with ISCCP weather state

data available every 3 h without further assumptions.

When the same daily precipitation rate is assigned to

every weather state that may occur within the grid

cell during sunlit hours, the contrast between the

three most convective weather states is reduced. The
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domain-average precipitation rates and contributions

becomemuchmore consistent between the two datasets,

as might be expected, when most data are discarded in

favor of grid cells with a single weather state persist-

ing during daytime. Apparently, for those cases, the

GPCP-1DD daily average is a much better represen-

tation of the state’s precipitation. Diurnally averaged

precipitation composites cannot capture as well the

frequency of nonprecipitating WS1 occurrences, im-

plying that once WS1 appears in a grid cell, it is very

unlikely that the cell will remain precipitation-free for

the entire 24-h period.

Since clouds are the most prominent regulators of

radiation and precipitation, it is natural to explore in

future work the connections between precipitation, ra-

diation, and the state of the atmosphere as a function of

cloud regime using a weather state framework. To some

extent, work along these lines has already been performed

(e.g., Tromeur andRossow 2010;Gordon andNorris 2010;

Tselioudis and Rossow 2011; Oreopoulos and Rossow

2011; and this work), but the unifying effort that will fully

integrate the physical relationships between atmospheric

dynamical and thermodynamical states and the budgets of

radiation and precipitation into a coherent picture

has not yet materialized. Once such an effort is com-

pleted, a better foundation for how to analyze cloud

regimes and associated meteorology in conjunction

with energy and water budgets will be available for

climate models to capitalize on. This can potentially

lead to significant leaps in the quality of model hy-

drology and energetics.
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