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ABSTRACT

Because of the importance of clouds in modulating Earth’s energy budget, it is critical to understand their

variability in space and time for climate and modeling studies. This study examines the consistency of the

spatiotemporal variability of cloud amount (CA) and cloud-top pressure (CTP) represented by five 7-yr

satellite datasets from the Global Energy andWater Cycle Experiment (GEWEX) cloud assessment project,

and total cloud fraction observation from the Extended Edited Cloud Reports Archive (EECRA). Two

spectral analysis techniques, namely combined maximum covariance analysis (CMCA) and combined prin-

cipal component analysis (CPCA), are used to extract the dominant modes of variability from the combined

datasets, and the resulting spatial patterns are compared in parallel. The results indicate that the datasets

achieve overall excellent agreement on both seasonal and interannual scales of variability, with the corre-

lations between the spatial patterns mostly above 0.6 and often above 0.8. For seasonal variability, the largest

differences are found in theNorthernHemisphere high latitudes and near the SouthAfrican coast for CA and

in the Sahel region for CTP, where some differences in the phase and strength of the seasonal cycle are found.

On interannual scales, global cloud variability is mostly associated with major climate modes, including El

Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the Indian Ocean dipole

mode (IODM), and the datasets also agree reasonably well. The good agreement across the datasets supports

the conclusion that they are describing cloud variations with these climate modes.

1. Introduction

Clouds cover about 70% of the earth’s surface and

play an important role in the climate system by strongly

altering the incoming solar and outgoing thermal radi-

ation. Knowledge of cloud properties such as cloud

coverage, cloud-top pressure, and microphysical prop-

erties is thus essential to accurately estimate the energy

budget. Currently, most information on cloud properties

is derived by satellite remote sensing techniques. Vari-

ous sensors have been developed to detect clouds and to

facilitate the retrieval of cloud properties from the
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spacebornemeasurements. These sensors have different

spectral designs and viewing geometries, and therefore

different retrieval algorithms have been developed for

the different satellite sensors according to their capabil-

ities. These include multispectral imagers such as the

Advanced VeryHighResolution Radiometer (AVHRR;

Foster and Heidinger 2013) and Moderate Resolution

Spectroradiometer (MODIS; Platnick et al. 2003), hy-

perspectral infrared sounders such as the Atmospheric

Infrared Sounder (AIRS; Aumann et al. 2003), and lidar

instruments such as Cloud–Aerosol Lidar and Infrared

Pathfinder Satellite Observations (CALIPSO; Winker

et al. 2009). Cloud observations can also be made from

the surface by visual observations at weather stations,

which also provide long-term cloud amount and type

information worldwide.

However, cloud climatologies derived from different

satellite sensors and the surface can exhibit considerable

differences and systematic biases due to sources of un-

certainties such as surface brightness, pixel resolution,

cloud inhomogeneity for satellites (Li et al. 2004), and

observing procedure changes for surface observation

(Eastman and Warren 2013). Therefore, it is important

to compare and evaluate the agreement and disagree-

ment between different cloud observational datasets in

order to make the best use of the data in climate and

modeling studies, as well as to improve current retrieval

algorithms. Many comparison studies have been made

previously focusing on different datasets and different

variables. The cloud assessment project initiated by the

GEWEX Radiation Panel provides a very comprehensive,

coordinated intercomparison of global cloud climatologies

frommore than 10 publicly available datasets (Stubenrauch

et al. 2013), by evaluating the global mean and latitudinal

distribution as well as the seasonality of several key

cloud parameters. Other examples include the compar-

ison of zonal mean high cloud amount between the In-

ternational Satellite Cloud Climatology Project (ISCCP)

and the Stratospheric Aerosol and Gas Experiment

(SAGE) (Liao et al. 1995), comparison of ISCCP cloud

parameters to the High-Resolution Infrared Sounder

(HIRS) (Stubenrauch et al. 1999), comparison of cloud-

top heights betweenMODIS andMISRusing collocated

measurements at specific sites (Naud et al. 2002), a more

thorough evaluation of MODIS, MISR, and ISCCP

cloud-top height and optical depth products byMarchand

et al. (2010), comparison between cloud height retrievals

by AIRS, MODIS, and CALIPSO for collocated scenes

(Weisz et al. 2007), and the evaluation of AIRS clima-

tology withCALIPSO andCloudSat (Stubenrauch et al.

2010). In these studies, the comparisons were generally

focused on the analysis of mean spatial maps, zonally

averaged time series, or collocated scenes. While these

types of approaches are useful to assess data accuracy,

they are unsuited for the evaluation of the spatial and

temporal variability of cloud properties. In this study, we

focus on the intercomparison of the spatiotemporal

variability in different archived datasets.

Spectral analysis techniques have proven to be effective

in identifying and isolating dominant variability both

spatially and temporally through the decomposition of the

data covariancematrix. Thesemethods can also be used in

the comparison of multiple datasets of the same physical

parameter; by comparing the spatial and temporal modes

extracted from different datasets, the agreements and

disagreements in spatiotemporal variability can be exam-

ined in parallel. In earlier studies, Li et al. (2013, 2014a,b,c)

applied four different spectral decomposition techniques

to the analysis and comparison of aerosol datasets re-

trieved by multiple satellite sensors and a ground-based

sun photometer network. These studies indicated that

these spectral methods have the following advantages:

1) they reducedata dimensionality and limit the comparison

to only the first few dominant modes of variability; 2) the

coherency or lack thereof in both the spatial and temporal

dimensions canbe simultaneously examined and compared;

3) the methods are capable of extracting the common

modes of variability from different datasets, which enables

parallel comparison to better identify agreements and dis-

agreements; and 4) the leading modes can often be ex-

plained by or related to physical phenomena, such as

regular seasonal cycle, climate oscillations, or events.

With respect to cloud observations, Rossow et al. (1993)

used empirical orthogonal function analysis to in-

tercompare the space and time variability of global cloud

distribution in ISCCP and three other datasets. Their

study mainly focused on the examination of the seasonal

cycle. In this study, we aim to extend the Rossow et al.

(1993) analysis by examining interannual variability as

well, and by incorporating more and newer satellite- and

ground-based datasets. We focus on basic cloud parame-

ters of cloud amount (CA) and cloud-top pressure (CTP),

which provides cloud height information, and both sea-

sonal and interannual variability are examined and com-

pared. Section 2 introduces the five satellite datasets and

one surface dataset used in the study. Section 3 describes

the two spectral analysis methods used for space–time

comparison, namely combined principal component

analysis (CPCA) and combined maximum covariance

analysis (CMCA). The results are presented in section 4

and the conclusions are presented in section 5.

2. Datasets

The primary source of satellite datasets is the GEWEX

Cloud Assessment database (Stubenrauch et al. 2013).
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TheGEWEXCloudAssessment project was initiated in

2005 by the GEWEX Radiation Panel to compare dif-

ferent global cloud data products from multispectral im-

agers, infrared sounders, and active lidars with the

International Satellite Cloud Climatology Project (Rossow

and Schiffer 1999). The data provided by GEWEX Cloud

Assessment database are in gridded,monthlymean format

and cover a wide range of satellite sensors with different

instrumental characteristics and retrieval capabilities. In

this study, we focus the comparison on two basic variables:

cloud amount and cloud top pressure, from five satellite

datasets, namely the ISCCP, the Advanced Very High

Resolution Radiometer data processed by the Pathfinder

Atmospheres Extended program (PATMOS-x), the

Moderate Resolution Imaging Spectroradiometer from

both the Aqua and Terra platforms, and the Atmospheric

Infrared Sounder. Only daytime data are considered in

this study.

The ISCCP project (Rossow and Schiffer 1999) uses a

combination of multispectral imager observations onboard

weather satellites and global retrievals of the atmospheric

thermodynamic state to derive cloud properties. The

ISCCP record spans 30 yr, is the only product that re-

solves diurnal variations, and has emerged as a baseline

description of cloudiness in the earth’s atmosphere

(Rossow and Schiffer 1991, 1999). The only commonly

available spectral bands are visible (VIS) and infrared

(IR). ISCCP cloud detection is based on space and time

variability of the IR and VIS radiances. IR radiances are

used to derive cloud-top temperature, corrected for IR

transparency using VIS radiances during daytime, and

the CTP product is obtained using atmospheric tem-

perature, water vapor profile, and ozone abundance

from the TOVS product (Rossow and Schiffer 1991).

For the purpose of spatiotemporal comparison, we

prefer a long data record, and the ISCCP data provided

by GEWEX Cloud database terminate in 2007. We also

note that the version of ISCCP in the GEWEX Cloud

database is not the official version but a special version

prepared especially to facilitate comparisons and to il-

lustrate certain aspects of the cloud retrievals. The

GEWEX ISCCP data version only includes observa-

tions at four local times: 0300, 0900, 1500, and 2100. It

also does not include the day–night algorithm correction

implemented in the officially released ISCCP D2 data.

Moreover, it was interpolated to 18 3 18 resolution from

the original 280-km equal area product. Because of the

differences between the GEWEX version and the offi-

cially released ISCCP product, the ISCCP data used

here are from the official ISCCP version D2 with all

observation times from 0000 to 2100. The ISCCP CA

and CTP data have been sorted to include only daytime

observations at each location. Specifically, the reported

UTC time in ISCCP D2 data is converted to local time

for eachgridbox (local time5UTC1 longitude3 12/180);

then only data collected between 0600 and 1800 local time

are selected as daytime observations.

The AVHRR instruments are multispectral imagers

with five spectral channels onboard a series of National

Oceanic and Atmospheric Administration (NOAA) sat-

ellites. Cloud detection by the NOAA PATMOS-x pro-

cessing system is based on Bayesian classifiers derived

fromCALIPSO (Heidinger et al. 2012) and the retrieval is

based on an optimal estimation approach (Heidinger and

Pavolonis 2009). Cloud-top temperature is first retrieved

using the two IR channels, and the CTP information is

derived using cloud-top temperature and interpolating

within the NCEP numerical weather prediction (NWP)

temperature profile (Heidinger and Pavolonis 2009). We

average observations made at two daytime overpasses:

0730 and 1330 into one monthly mean dataset. Temporal

biases in diurnal variability due to orbital drift have been

noted in the PATMOS-x cloud climatology by Foster and

Heidinger (2013). However these biases are not significant

due to the relatively short record used here and the less

drifting in the newer satellites.

MODIS is also a multispectral imager with 36 chan-

nels. It was launched onboard the EOS-Terra satellite in

December 1999 and later on EOS-Aqua in May 2002.

Here we use Collection 5 cloud products from both

platforms retrieved by the MODIS science team. Cloud

amount is determined using spectral testing (Ackerman

et al. 1998; Frey et al. 2008; Menzel et al. 2008) and CTP

is retrieved using CO2 slicing (Menzel et al. 2008). The

equatorial overpass time is 1030 for Terra and 1330 for

Aqua. The two MODIS data are combined in this study

to avoid over contribution from the MODIS sensor and

algorithm in the analysis.

The AIRS instrument is an IR sounder launched also

onboard the EOS-Aqua platform in 2002. It has three IR

spectral bands with high spectral resolution. The AIRS-

LMD cloud retrieval product in the GEWEX archive

uses spectral emissivity coherency for cloud detection

and a weighted x2 method to determine the CTP

(Stubenrauch et al. 2010; Guignard et al. 2012). Only one

daytime measurement at 1330 is available for AIRS.

Except for the ISCCP data, all other satellite datasets

obtained from the GEWEX Cloud Assessment database

are gridded onto the same 18 3 18 spatial resolution. The
time period, January 2003 to December 2009 used here,

corresponds to the longest period of overlapping data.

In addition to satellite observations, we also incorporate

one ground-based cloud dataset in order to yield a more

complete comparison. The surface data are provided by

the Extended Edited Cloud Report Archive (EECRA;

Hahn and Warren 1999; Eastman and Warren 2013). The
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EECRA integrates surface-based cloud observations

from worldwide weather stations and covers most of the

land area. Ship observations are also available for some

ocean regions (Hahn et al. 2009). Here, we use monthly

mean daytime EECRA cloud amount data from both

land and ocean. The land data are provided for each in-

dividual station while the ocean data are gridded into

108 3 108 grids. The temporal coverage of land and ocean

data are also slightly different. For land, we use data from

January 2003 toDecember 2009, while for ocean the data

are only updated to December 2008. Moreover, as a

complete time series is essential for constructing the

temporal variancematrix used in the spectral analysis, we

select 1376 land stations and 157 ocean grid boxes that

have no missing monthly data points for the 2003–09 and

2003–08 periods, respectively. Overall, the spatial cover-

age of the stations is excellent for Europe, Asia, and the

Northern Hemisphere oceans. The distribution of the

stations is relatively sparse forAfrica and SouthAmerica.

The coverage for North America is also low for the study

period due to the switching to automatic weather stations,

whose reports are not compatible with human observa-

tions (Dai et al. 2006).

While satellite sensors are able to detect clouds

during both day and night, and night observations are

also attempted by EECRA, the data volume and ac-

curacy are reduced during night for EECRA due to

illumination requirements. As a result, to avoid possi-

ble effects of diurnal cloud changes, we use daytime

only measurements for all satellites and EECRA. The

EECRA daytime measurements are defined as those

made between 0600 and 1800 local time (Eastman and

Warren 2013).

3. Methods

Spectral decomposition techniques are very effective

and efficient in reducing data dimensionality and in

identifying the major modes of variability in space and

time. Previously we applied and developed several

spectral methods to intercompare different aerosol ob-

servations (Li et al. 2013, 2014a,b,c). In this study, we use

combined principal component (CPCA) analysis for CTP

comparison and combined maximum covariance analysis

(CMCA) for CA comparison. Below we briefly describe

these two techniques, while their detailed mathematical

description can be found in Li et al. (2014b) and Li et al.

(2014c), respectively.

The CPCA is a modification of the traditional prin-

cipal component analysis (PCA) by decomposing the

covariance matrix of the different data fields combined.

In this way, the leading modes will maximize the vari-

ance explained by the sum of the elements in the

combined field (Bretherton et al. 1992). Specifically, a

combined data matrix is constructed by

D5

2
66664

X1

X2

..

.

Xn

3
77775

(1)

where X1 to Xn are different datasets (e.g., different sat-

ellite observations of CTP), whose columns are the

number of spatial locations and rows are observations at

each location. Then PCA decomposition is performed on

the covariance matrix of this joint field to obtain the or-

thogonal temporal modes (time series). The spatial

modes are found by projecting the temporal modes back

to each individual data matrix. As a result, each CPCA

mode comprises an individual spatial pattern for each

dataset and a shared time series that represents how these

spatial patterns evolve over time. Because usually the first

few leading modes explain the bulk of the variance in all

data fields, and the spatial modes of different datasets

correspond to the single time series, the comparison is

effectively reduced to the comparison of the spatial pat-

terns from only the first few dominant modes. An im-

portant note on CPCA is that by combining different

datasets as shown in Eq. (1), we are assuming equal

weights for the fields being combined. In other words,

different fields should in theory have the same order of

magnitude in spatial and temporal variability. In this

study, this prerequisite is satisfied, as the different data-

sets are measurements of the same physical parameter

(CTP). Although ISCCP has different spatial mapping

than the other datasets, this problem is reconciled by

balancing the information density using the area of each

grid as the weight; that is, before combining the datasets,

the value of each grid box is weighted by the area of that

grid box. Nonetheless, caution must be taken when using

CPCA for datasets of different parameters.

While CPCA successfully achieves parallel comparison

across the satellite datasets, it is not suitable for scattered

ground-based observations. This is because unlike regu-

larly gridded data, the spatial representativeness (or the

weight of each station) is difficult to determine, and

blindly combining satellite and ground observations

may result in serious biases in the decomposition results.

Therefore, for the CA comparison, for which data are

available from both ground-based and satellite mea-

surements, we use the CMCA method developed by Li

et al. (2014c). The CMCA is an extension of CPCA and

another spectral method—maximum covariance analy-

sis (MCA, also known as singular value decomposition

analysis)—and accommodates bothmultisensor satellite
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data and ground-based observation. The MCA method

is used to find coupled modes between two datasets

through the decomposition of their cross-covariance

matrix (Bretherton et al. 1992; Li et al. 2014a). It has

no strict assumption and can be basically applied to any

two data fields. The leading modes have the property of

maximizing the covariance in the two data fields. And

because the covariance is the product of the correlation

of the two data fields and the variance of each individual

data field, the dominant modes represent the variability

that both have the highest correlation and account for

the most variance of each individual dataset. Therefore,

agreements as well as differences between datasets in

terms of spatiotemporal variability can be found by ex-

amining the correlation between the temporal modes

and comparing the spatial patterns. In CMCA, MCA is

performed between the combined satellite field con-

structed by Eq. (1) and the ground observation field, so

that the dominant modes of variability of all different

datasets can be extracted and compared in parallel. Note

that although the EECRA ocean data are gridded, the

distribution of the grid boxes is sparse when compared

with the resolution of the satellite datasets. We thus also

use CMCA for the analysis of ocean CA data instead

of CPCA.

The construction of the data covariance/cross-covariance

matrix requires the removal of the temporalmean at each

spatial location. Because global cloud variability exhibits

distinct seasonal cycles, the remaining data matrix will be

dominated by seasonal variability, which allows the

comparison of different datasets on annual or seasonal

time scale. Moreover, we also construct a deseasonalized

dataset by removing the multiyear averaged seasonal

cycle from each grid box to further examine interannual

variability. Finally, because of the absence of daytime

measurements during polar nights, the spatial domain of

this analysis is restricted to 6608 latitude.

4. Results

We present the analysis and comparison for CA fol-

lowed by CTP. For each variable, we first briefly compare

the time series mean (which is removed in the subsequent

spectral analysis), standard deviation (mainly represent-

ing seasonal variability), and deseasonalized standard

deviation (representing interannual variability) fields. We

then present and discuss CMCA results for CA, sepa-

rately for land and ocean due to different EECRA data

formats, and CPCA results for CTP.

a. CA

CA, or cloud fraction, is the fraction of pixels that

contain clouds with respect to the total number of valid

pixels. It is the first-order indicator of global cloud dis-

tribution. Figure 1 shows the time series mean, standard

deviation, and deseasonalized standard deviation fields

for the five different datasets. The spatial patterns of all

three rows in Fig. 1 agree very well. The two numbers on

the upper right corner of each map indicate global mean

values for land/ocean, weighted by the area of each grid

box for the satellite datasets. Globally, on average CA is

high in the intertropical convergence zone (ITCZ) and

midlatitude storm tracks, and low for the arid regions of

the subtropics. The mean CAs for the different datasets

are very close, ranging from 0.55 to 0.61 over land, and

from 0.62 to 0.73 over ocean, which is consistent with

Stubenrauch et al. (2013) that global mean CA over

ocean is approximately 0.1–0.15 higher than that over

FIG. 1. (top)Multiyear averaged global mean CA (color scale runs from 0 to 1 in 0.2 increments), (middle) CA standard deviation fields

(color scale runs from 0 to 0.4 in 0.1 increments), and (bottom) deseasonalized CA standard deviation fields (color scale runs from 0 to 0.1

in 0.05 increments) of (left to right) the five CA datasets: ISCCP, PATMOS-x, AIRS, MODIS Combined, and EECRA. The numbers on

the top-right corner of each panel indicate land/ocean averages of the spatial map. All datasets agree well in the spatial patterns and

global means.
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land. The EECRA ocean average (0.62) is the lowest

because the data are not complete for many high CA

regimes including the tropics and Southern Hemisphere

midlatitudes. For the standard deviation fields, the high-

est signals are found for several land regions including

South Africa, South America, India, and northern Aus-

tralia, indicating the strongest seasonality over these re-

gions, while the seasonal variability is generally lower

over the oceans. The global mean standard deviations for

the individual datasets are also reasonably close, with

land values from 0.12 to 0.15 and ocean values 0.08 to

0.10. The deseasonalized standard deviation fields also

agree quite well across the datasets. The highest vari-

ability is found in theNiño-4 region of the east Pacific and
the South Pacific convergence zone (SPCZ), while the

midlatitude oceans and tropical lands have the lowest

variability. Globally averaged interannual CA variability

is around 0.08 over land and 0.07 over ocean.

It is also worth noting that some differences still exist

in Fig. 1. For example, ISCCP has lower CA over much

of South America. ISCCP and AIRS have lower sea-

sonal variability over Europe, where ISCCP also has

lower interannual variability.

1) CMCA ANALYSIS OVER LAND

This section presents the CMCA decomposition re-

sults for land data and compares themodes of variability

for the different datasets. The analysis is first performed

on the full dataset with the seasonal cycles left in, in

order to examine seasonal variability. To determine the

number of significant modes, we first examine the vari-

ance explained by the first 20 modes, which is shown in

Fig. 2. Mode 1 is clearly dominant, explaining nearly

60% of the total variance. Modes 2 and 3 also stand out

by accounting for significantly higher variance than the

following modes, while the variance falls below 1% for

mode 4. We thus consider the first three modes to be the

leading modes.

The spatial patterns and time series for the first three

CMCA modes are presented in Fig. 3. The black curves

in the bottom row of Fig. 3 show the time series (PCs)

associated with the spatial patterns for each satellite

dataset shown in the first five rows, while the red curves

indicate the temporal evolution of the EECRA spatial

modes shown in the sixth row. The PCs of the satellite

and EECRA data are highly correlated for all three

modes, with correlations (indicated by the R value) well

above 0.9, indicating coherent variability. PCs 1 and 2

exhibit strong summer–winter and spring–fall seasonal

cycles, respectively, while PC 3 displays a semiannual

variability (with summer–winter and spring–fall peaks).

The seasonality in modes 1 and 2 agrees well with the

earlier results (Rossow et al. 1993). The spatial maps

associated with the individual satellite datasets also ap-

pear to agree well. Although the EECRA data miss the

signal in several regions due to insufficient coverage,

FIG. 2. Variances explained by the first 20 CMCAmodes of CA full dataset with seasonal cycle

left in over land.
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where the data are complete they capture the dominant

variability shown in the satellite spatial maps. To ex-

amine the agreement between the spatial patterns more

quantitatively, we calculated the correlation coefficients

between the spatial maps for each mode and list the

results in Table 1. All correlations in Table 1 are cal-

culated with respect to theMODIS spatial modes, which

temporarily serve as the reference. All data except for

FIG. 3. (left to right) The first three CMCAmodes for the full CA dataset over land. The top five rows show the spatial patterns of each

dataset—(top to bottom) ISCCP, PATMOS-x, AIRS,MODISCombined, andEECRA—with one column for eachmode, and the bottom

row shows the PC time series. The numbers in the top-right corner of each spatial mode indicate the percentage of variance explained by

that mode. TheR value on the upper left of each PC panel indicates the correlation coefficient between the satellite and EECRAPC. For

the spatialmodes, red colors indicate positive anomalies, which vary in phasewith the corresponding PC; while the blue colors are negative

anomalies that vary out of phasewith the PC. The PC correlations are quite high and the spatial patterns all agree verywell, which suggests

that different datasets are highly consistent in representing the major seasonal variability of CA.
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ISCCP have been downscaled from 18 3 18 to 2.58 3 2.58.
The downscaling retains all the variability of the original

patterns (figures not shown). From Table 1, we can see

that the correlation coefficients are reasonably high. All

correlations are above 0.6, with many cases above 0.8.

The high correlations in both the spatial patterns and

temporal variability are very encouraging. Nonetheless,

we note some differences. Most of the disagreements

appear to come from high latitudes in the Northern

Hemisphere. For example, in mode 1, PATMOS-x and

MODIS show strong positive signals over Europe and

NorthAmerica, while ISCCP andAIRS only have weak or

even negative signals over these two regions. The EECRA

signal for Europe better agrees with PATMOS-x and

MODIS. Also, for the East Asia region (including

Siberia), ISCCP, AIRS, and EECRA exhibit extensive

negative anomalies, PATMOS-x has only a weak neg-

ative projection over this region, butMODIS indicates a

positive anomaly. Sincemode 1 is associatedwith a regular

summer–winter seasonal cycle, and in winter these lati-

tudes often have extensive snow/ice cover, these differ-

ences suggest possible issues with cloud detection above

the snow or ice surface. Therefore, we further compare the

seasonal cycles for NH high latitudes to identify the

source of the disagreements. Because EECRA data do

not cover most of North America, we separated the NH

high latitudes into two subregions: between 408 and 608N
in Europe and Asia and between 408 to 608N in North

America. Figure 4 shows the multiyear averaged CA

seasonal cycles averaged within these two subregions.

From Figs. 4a and 4b, it is clearly seen that bothMODIS

and PATMOS-x data exhibit a strong seasonal cycle for

the two NH high-latitude regions, with minimum CA in

July and August and maximum CA in December and

January. As this seasonality is out of phase with PC 1,

which has summer maximum and winter minimum, NH

high latitudes appear as negative signals in mode 1 for

these two datasets. However, the seasonality for the

other three datasets, ISCCP, AIRS, and EECRA, is

much weaker. The phase of the seasonal cycles also

disagrees with that of MODIS and PATMOS-x. For

ISCCP, AIRS, and EECRA, CA is slightly higher dur-

ing the spring and fall months from April to June and

from October to November, respectively, but lower for

the summer months of July and August. This seasonality

is also different from PC 1, which results in a weak pro-

jection of PC 1 on the spatialmaps of these three datasets.

Several factors may account for the discrepancies in sat-

ellite retrievals, including bright surfaces that often ap-

pear in high latitudes during the winter months. The

discrepancy in the CA seasonal cycle for NH high lati-

tudes suggests that large uncertainties still exist in cloud

detection for this region, and improvements are likely

needed in the satellite algorithms over bright surfaces to

yield a consistent result. Although the two MODIS data

are combined here for better diurnal resolution,MODIS-

Aqua and -Terra can also have differences due to factors

such as cloud diurnal cycle, sensor calibration, and sen-

sitivity, which will be investigated in the future.

Next, we examine interannual variability through

CMCA analysis of the deseasonalized dataset. The

variance explained by the first 20 CMCA modes is

shown in Fig. 5. The variance associated with the de-

seasonalized modes is in general smaller than those of

the full dataset, because seasonal variability accounts for

the bulk of the variance. Based on the sharp drop of

variance from mode 4 to mode 5 shown by Fig. 5, we

consider the first four modes to be significant. Figure 6

presents the first four modes and the corresponding time

TABLE 1. Land full dataset for CA, showing the correlation co-

efficients between the spatial patterns of modes 1, 2, and 3 of dif-

ferent datasets with those of MODIS.

Dataset ISCCP PATMOS-x AIRS EECRA

Mode 1 0.85 0.91 0.83 0.85

Mode 2 0.61 0.77 0.81 0.92

Mode 3 0.73 0.79 0.75 0.71

FIG. 4. Multiyear averaged seasonal cycle for the NHhigh latitudes

for the five datasets: (a) Europe and (b) Asia and North America.

These regions appear to have the largest discrepancy among the

CMCA mode 1. From this figure, we are able to see that the dis-

agreements are due to the different phase and strength of the seasonal

cycle for PATMOS-x and MODIS from the other three datasets.
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series. The PC time series are much noisier and reflect

perturbations of the CA apart from the regular seasonal

cycle. The PCs of satellite and EECRA are also highly

correlated, with correlations well above 0.8. Moreover,

although the deseasonalized spatial patterns appear

noisier than those of the full dataset (Fig. 3), the different

datasets agree remarkably well. In fact, the correlations

between the deseasonalized spatial modes are higher

than those for the full data. Table 2 lists the correlation

coefficients with respect to MODIS, which show that all

correlations are close to or above 0.8. This result is again

very encouraging in that while different datasets may

differ on seasonal scales for certain regions, they are

highly consistent on interannual time scales. It is also

interesting to note that modes 3 and 4 in Fig. 6 capture an

ENSO pattern. We correlate these two time series with

the multivariate ENSO index (MEI; Wolter and Timlin

2011) provided by the NOAA Earth System Research

Laboratory, and find that the correlations are 0.38 and

0.52, respectively, for PC 3 and PC 4. Also their spatial

patterns exhibit positive anomalies over several regions,

especially high latitudes in Asia and Europe, suggestive

of ENSO teleconnection from tropics to high latitudes.

2) CMCA ANALYSIS OVER OCEAN

In this section, we present and discuss CMCA results

for ocean data. Similar to land, we first examine seasonal

variability. The first three CMCAmodes of full (seasonal

cycle included) ocean data capture the bulk of the vari-

ance (;60%, Fig. 7). Figure 8 shows the spatial patterns

and time series of modes 1, 2, and 3 for the ocean data.

Likewise, PCs 1 and 2 represent winter–summer and

spring–fall seasonality respectively, while PC 3 exhibits a

semiannual seasonal cycle. High correlations are also

found between the PCs of satellite and EECRAdata over

ocean. Qualitative comparison between the five spatial

patterns of each mode indicates excellent agreement. The

correlation coefficients between the spatial patterns are

calculated against MODIS and the values are given in

Table 3. The correlations are even higher for ocean results

than for land except forAIRS.For ISCCPandPATMOS-x,

the correlations of all three modes with MODIS are

close to or above 0.9. AIRS has comparatively lower

correlations, especially for mode 2. Going back to Fig. 8,

we find that this low correlation is mainly attributable to

two regions, 1) the north Mexican coast and 2) the sub-

tropical Atlantic close to the South African coast (regions

indicated by the black rectangles on the mode 2 spatial

maps). Removing these two regions, the correlation be-

tween AIRS and Aqua MODIS mode 2 increases from

0.51 to 0.76. For region 1, only the AIRS spatial map

shows positive anomalies, whereas weak negative anom-

alies are found in the other datasets. For region 2, all of the

ISCCP, PATMOS-x, MODIS, and EECRA spatial maps

exhibit a strong positive anomaly, while the AIRS mode

has negative anomalies with a narrower spatial extent.

FIG. 5. Variances explained by the first 20 CMCA modes of deseasonalized CA dataset

over land.
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Since these two regions are primarily dominated by low-

level marine stratus clouds, this suggests problems in the

seasonality of low clouds represented by the AIRS data.

We therefore further compare the mean seasonal cycle

averaged over the two black rectangles in order to iden-

tify the cause of the disagreements. The results are shown

in Fig. 9. From Fig. 9a, it is clearly seen that the AIRS

seasonal cycle is completely out of phase with the other

datasets. It displays a June and July minimum, whereas

all of the other datasets reach a maximum during these

two months. For region 2 (Fig. 9b), the mean seasonal

cycles of all datasets except AIRS are very consis-

tent, with the highest CA during the fall months

(September–November). For AIRS, interestingly, the

first half of the seasonal cycle (i.e., from January to

August) agrees well with the other datasets. However,

AIRS CA drops during the second half of the year

from August to December, without reaching a maxi-

mum value in the fall months. This different behavior

of AIRS data leads to a phase shift of its seasonal cycle

with respect to the other datasets as well as PC 2, which

then results in a negative projection of PC 2 on AIRS

map for the South African coast region. AIRS is

known to have issues with low-level cloud detection

FIG. 6. As in Fig. 3, but for the first four CMCAmodes for deseasonalizedCAdata land. The deseasonalizedmodes all agreewell in both

spatial and temporal variability, indicating that the different datasets are also highly consistent in characterizing interannual variability

of CA.

TABLE 2. Deseasonalized land dataset for CA, showing the

correlation coefficients between the spatial patterns of modes 1 to 4

of different datasets with those of MODIS.

Dataset ISCCP PATMOS-x AIRS EECRA

Mode 1 0.87 0.88 0.83 0.90

Mode 2 0.85 0.89 0.85 0.91

Mode 3 0.76 0.81 0.82 0.82

Mode 4 0.80 0.80 0.84 0.89
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and the results here confirm this drawback with IR-

only measurements.

The interannual variability for ocean CA is also ana-

lyzed and compared. Figure 10 shows the variance ex-

plained by the first 20 CMCAmodes. Based on the large

decrease of the variance frommode 4 to mode 5 and the

small differences in the variance explained by the

higher-order modes, we select the first four modes for

further examination, shown in Fig. 11. The spatial pat-

terns for all modes (Fig. 11) also agree well. And the

correlations between the time series are well above 0.9.

Mode 1 of all datasets exhibit an ENSO-like pattern,

with positive anomalies over the central Pacific and

negative anomalies over the west Pacific warm pool. PC

1 also appears to reflect ENSO variability, and the peak

in late 2006 and drop in early 2008 could correspond to

the El Niño and La Niña events of these two years, re-

spectively. To confirm this, we again correlate the PC 1

time series with MEI. It is found that MEI is significantly

correlated with PC 1 of both satellite and EECRA data,

with correlation coefficients of 0.81 and 0.69, respectively.

The latter is lower mainly because EECRA data do not

cover the central Pacific Niño-4 region and thus do not

reflect the positive anomalies. No significant correlation

is found betweenMEI and the PC of the other modes. As

mode 1 explains the most variance of the deseasonalized

data, its correlation with ENSO suggests that ENSO is

the primary factor affecting the interannual variability of

global cloud amount over oceans. Similar ENSO-

related cloud pattern changes were also reported by

Park and Leovy (2004) and Zhu et al. (2007). The

correlations between the spatial patterns of modes 1 to

4 are also remarkably high, as indicated in Table 4.

Mode 4 of PATMOS-x has a slightly higher variability

overall compared to the other five datasets. This

phenomenon is consistent with the overall higher

variability found in the PATMOS-x deseasonalized

standard deviation field (Fig. 1). Nonetheless, the

distribution of the signals of PATMOS-x mode 4 is still

in agreement with the other datasets.

To briefly summarize the results for CA inter-

comparison, by using the CMCA technique, the major

spatial and temporal variability on both seasonal and in-

terannual time scale are successfully extracted. The five

different datasets agree remarkably well in the spatio-

temporal variability for both land and ocean. The corre-

lations of the spatial patterns are mostly above 0.7 and

often reach 0.9. For land data, differences mainly lie in the

NHhigh latitudes, whereMODIS and PATMOS-x have a

strong summer–winter seasonal cycle. However, the sea-

sonality in the other three datasets is comparably weaker,

exhibiting a phase difference. For ocean, AIRS seasonal

cycle is out of phase from the other four datasets over the

subtropical Atlantic region near South African coast. The

interannual variability is highly coherent across the data-

sets for both land and ocean.

FIG. 7. Variances explained by the first 20 CMCAmodes of CA full dataset with seasonal cycle

left in over ocean.
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b. CTP

CTP indicates cloud height, and as clouds at different

altitudes have different radiative effects, accurate in-

formation of CTP is important in studying the earth’s

energy budget. CTP is also needed in the retrieval of

many other atmospheric and surface properties from the

space. Figure 12 shows the averaged global CTP distri-

bution, CTP standard deviation, and deseasonalized stan-

dard deviation fields for the four satellite datasets. CTP is

not available from surface retrievals. The global CTP dis-

tribution appears consistent across the four datasets,

FIG. 8. As in Fig. 3, but over ocean. PCs 1 and 2 exhibit a strong seasonal cycle while PC 3 represents semiannual variability. The

correlations for the PCs are very high. The spatial modes are also highly coherent. Twomajor regions with disagreements are the northern

Mexican coast and South African coast, which are marked by the black rectangles on mode 2 spatial maps.
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especially betweenAIRS andMODIS. CTP distribution

shows well-known cloud characteristics, including low

CTP (high clouds) in the ITCZ, west Pacific, and some

desert regions and high CTP (low clouds) in the central

subtropical gyres and southern Indian Ocean. Overall

CTP is lower over land than over ocean. The regions

with the highest seasonality include the subtropical re-

gions in both hemispheres, inferred from the stan-

dard deviation fields (middle row of Fig. 12), while the

interannual variability is largest over tropical oceans,

especially the west Pacific, subtropical oceans (especially

the Indian Ocean), the SPCZ, and the Gulf of Mexico,

and some land regions including India, northern Aus-

tralia, and the eastern United States, as shown by the

deseasonalized standard deviation fields (bottom row of

Fig. 12). The agreement between the spatial patterns

and global mean values for the satellite datasets is less

good for CTP than for CA. CTP retrieval by passive

sensors usually involves external inputs such as atmo-

spheric temperature profiles, and differences in these

ancillary datasets may result in uncertainties in the re-

trieved CTP (e.g., Jin and Rossow 1997; Stubenrauch

et al. 1999, 2013; Wang et al. 2000). In addition, different

sensors may have different sensitivities to the detection

of high, thin cirrus clouds (King et al. 2013; Rossow and

Schiffer 1991; Stubenrauch et al. 2013). The ISCCP data

appear to have the most differences in both mean and

standard deviation fields compared to the other datasets.

The ISCCP annual mean CTP appears lower over the

oceans but higher over the Sahara desert compared to all

the other datasets. It also has lower variability for most

tropical and subtropical regions, in particular the tropi-

cal Pacific and Atlantic, South America, and South Af-

rica. Biases in the ISCCP retrieval toward midlevels and

its lower sensitivity to thin cirrus are likely to affect its

CTP variability.

The CPCA method is applied to the combined

multisensor CTP fields in order to extract and compare

the spatiotemporal variability. Asmentioned in section 2,

each CPCAmode will have one shared time series and a

spatial pattern for each individual dataset. The analysis

is first performed on the full dataset to emphasize sea-

sonal variability. Figure 13 shows the variances for the

first 20 CPCA modes, according to which we determine

the first two modes, accounting for .50% of the total

variance, to be dominant. Unlike results for CA, mode 3

does not exhibit semiannual cycles and is actually asso-

ciated with the Pacific decadal oscillation (PDO). How-

ever, it is almost identical to mode 1 of deseasonalized

analysis and thus is not shown here but will be discussed

further in the deseasonalized section. The spatial pat-

terns and PC time series of modes 1 and 2 are shown in

Fig. 14. Both modes are clearly associated with distinct

seasonal cycles. Mode 1 represents hemispheric differ-

ences in the CTP seasonality for the subtropical regions.

Specifically, the Northern Hemisphere exhibits the

lowest CTP or the highest cloud height during the local

summer [June–August (JJA)], when convection is also

at maximum, whereas for the Southern Hemisphere the

seasonal cycle is reversed. Mode 2 exhibits a (boreal)

spring–fall seasonal cycle, with negative anomalies found

in the tropics and East Asia and positive anomalies in the

midlatitudes. A weak positive trend is also observed in

the PC of mode 2, which we find is mainly associated with

decreasing CTP over the tropical and subtropical Pacific

and tropical Atlantic and increasing CTP over the tropi-

cal central Pacific (figure not shown), and is confirmed by

Tan et al. (2015). A cross comparison of the spatial pat-

terns for each mode indicates good agreement between

the different CTP datasets. Similar to the CA analysis,

TABLE 3. Ocean full dataset for CA, showing the correlation

coefficients between the spatial patterns of modes 1, 2, and 3 of

different datasets with those of MODIS.

Dataset ISCCP PATMOS-x AIRS EECRA

Mode 1 0.83 0.96 0.75 0.93

Mode 2 0.68 0.94 0.51 0.87

Mode 3 0.76 0.93 0.75 0.80

FIG. 9. As in Fig. 4, for the (a) northern Mexican and (b) South

African coastal regions. We can see that while the AIRS seasonal

cycle is out of phase for region A and has a phase shift for region B

(due to the CA drop from August to December).
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correlation coefficients against MODIS Aqua spatial

modes are computed and tabulated in Table 5. We are

able to see that all correlations are reasonably high.

Only ISCCP mode 2 has relatively lower correlation,

which is likely associated with the lack of positive signal

over the tropical and subtropical Pacific. This result is

consistent with the overall low variability in ISCCP

over this region found in the standard deviation fields

(Fig. 12). In addition, we note that the Sahel region also

has large disagreements in both modes 1 and 2. For

mode 1, this region appears with strong positive anom-

alies in PATMOS-x and AIRS maps but no detectable

signals show up for ISCCP and MODIS. For mode 2,

only the AIRS pattern has negative anomalies for the

Sahel while neutral or weakly positive signals are found

in the other datasets. As a result, we further investigate

this problem by comparing the averaged CTP seasonal

cycle for the Sahel (108–158N, 158W–358E) in Fig. 15.

Figure 15 clearly shows that the seasonal cycles for

PATMOS-x and AIRS are almost reversed with respect

to ISCCP and MODIS. The overall magnitude of vari-

ability is also much stronger for PATMOS-x and AIRS

datasets. This difference explains the strong projection

of PC 1 on PATMOS-x and AIRS spatial maps over the

Sahel, while the projection is weak or even reversed for

the other three datasets. Also the agreement between

AIRS and PATMOS-x implies that these differences are

associated with cirrus detection, and that this regionmay

be subject to larger cirrus retrieval uncertainties. In

addition to the Sahel, which has the strongest contrast

across the datasets, a few other regions also disagree.

These include East Asia (including Siberia) in mode 1,

where only MODIS shows strong positive anomalies,

and the western United States, where a weak negative

anomaly is found in the ISCCP.

We subsequently examine interannual variability

through CPCA analysis of the deseasonalized datasets.

Figure 16 plots the variance explained for the first 20

modes. There is a sharp drop from mode 3 to mode 4,

and higher-order modes beyond mode 4 all explain very

small fractions of the variance. We thus choose to ex-

amine the first three modes, and their spatial patterns

and time series are presented in Fig. 17. Ocean cloud

variability has been found sensitive to climate oscilla-

tions associatedwith sea surface temperature anomalies,

such as ENSO (e.g., Park and Leovy 2004; Zhu et al.

2007; Zelinka and Hartmann 2011). Because globally,

most cloud interannual variability comes from the

oceans (bottom row of Fig. 12), we find that modes 1, 2,

and 3 of deseasonalized CTP data (Fig. 17) respectively

capture the signature of climate oscillations of the PDO,

ENSO, and the IndianOcean dipolemode (IODM). This

conclusion is drawn by correlating the PC time series with

the corresponding climate indices, and by comparing the

spatial patterns with the associated SST anomalies. The

PDO index (Zhang et al. 1997; Mantua et al. 1997) is

FIG. 10. Variances explained by the first 20 CMCA modes for deseasonalized CA data

over ocean.
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provided by the University of Washington’s Joint In-

stitute for the Study of the Atmosphere and Ocean

(JISAO), and the IODM index [or dipole mode index

(DMI); Saji et al. 1999] is provided by the Japan Agency

for Marine-Earth Science and Technology, which is

derived from the HadISST dataset. The PDO index and

MEI and DMI time series for the study period are su-

perimposed on PCs 1, 2, and 3, respectively. The PDO

index is scaled by 0.1 andMEI andDMI are scaled by 0.2

to yield a comparable order of magnitude to the PC time

series. The PCs and the climate indices vary coherently,

although the PCs usually appear noisier than the climate

indices. This is reasonable as the decomposition is per-

formed on global datasets, while the signals of these

climatemodes are concentrated over a particular region,

such as tropical Pacific or the Indian Ocean. The cor-

relation between PCs 1, 2, and 3 with the PDO index,

MEI, andDMI are 0.64, 0.68, and 0.40, respectively. Their

significance levels are 0.98, 0.99, and 0.92, respectively,

after correcting for lag-1 autocorrelation. In addition to

the temporal consistency, the spatial patterns also re-

semble the SST anomalies for the PDO, ENSO, and

IODM. Mode 1 exhibits positive anomalies for the east

Pacific and negative anomalies for the central Pacific. A

FIG. 11. As in Fig. 6, but for ocean data. Mode 1 represents the variability associated with ENSO. The correlations between the satellite

and EECRA PCs with the multivariate ENSO index (MEI) are 0.81 and 0.69, respectively. Again, excellent agreement is found for all

spatial patterns and the satellite and EECRA PCs are highly correlated.

TABLE 4. Deseasonalized ocean dataset for CA, showing the

correlation coefficients between the spatial patterns of modes 1 to 4

of different datasets with those of MODIS.

Dataset ISCCP PATMOS-x AIRS EECRA

Mode 1 0.93 0.94 0.87 0.84

Mode 2 0.89 0.94 0.81 0.84

Mode 3 0.86 0.93 0.77 0.84

Mode 4 0.77 0.88 0.74 0.75
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strong positive anomaly also appears over the west Pa-

cific warm pool, which may be due to the ‘‘mode leak’’

caused by overlapping spatial patterns of ENSO and

PDO; that is, the ENSO and PDO types of variability

are not strictly orthogonal and therefore CPCA analysis

does not completely isolate them into two separate

modes. The pattern of mode 2 agrees well with the SST

anomaly induced by ENSO events. And the dipole

feature for Indian Ocean in mode 3 resembles the SST

pattern for the IODM positive phase (Saji et al. 1999).

FIG. 12. (top) Multiyear averaged global mean CTP (color scale runs from 100 to 900 in 100 increments), (middle) CTP standard

deviation fields (color scale runs from 0 to 200 in 50 increments), and (bottom) deseasonalized CTP standard deviation fields (color scale

runs from 0 to 100 in 20 increments) of (left to right) the four CA datasets: ISCCP, PATMOS-x, AIRS, and MODIS Combined. The

numbers on the top-right corner of each panel indicate land/ocean averages of the spatial map. Note that the color scale for the seasonal

variability (middle row) is twice as large as that for the interannual variability (bottom row). All datasets agree well in the spatial patterns

and global means.

FIG. 13. Variances explained by the first 20 CPCA modes for full CTP dataset.
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FIG. 14. As in Fig. 3, but for the two leading CPCA modes of the full CTP dataset; and without EECRA. Both

modes exhibit distinct seasonality and the spatial modes for the four datasets agree very well. The major difference

comes from the Sahel region (marked by the black rectangle on the spatial maps). In mode 1, this region exhibit

positive anomaly for PATMOS-x and AIRS but weakly negative signals for the other data. For mode 2, only AIRS

data indicate a negative anomaly over this region, while no significant signal is found for the other datasets.
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Nonetheless, the current data record is still relatively

short compared to the time scale of decadal climate

variability such as the PDO, and a longer time series is

likely required to further investigate the relationship

between the CTP and PDO.

Table 6 lists the correlation coefficients of the spatial

patterns with those for MODIS Aqua. Most of the corre-

lations are above 0.7, indicating good agreement. ISCCP

modes 1 and 2 agree lesswell with the other datasets.Major

regions of discrepancy include the Indian Ocean and west

Pacific. These regions are dominated by deep convection

that has strong diurnal cycles, so that diurnal samplingmay

explain part of the differences in perceived interannual

variations. The good agreement across different datasets

for all threemodes further strengths the association of CTP

variability with these major climate modes.

5. Conclusions

This study presents an intercomparison of the spa-

tiotemporal variability of five publicly available cloud

observational datasets. These datasets include retrievals

from multispectral imagers, IR sounders, and surface-

based human observation. Knowledge of the spatio-

temporal cloud variability is critical in understanding

the role of clouds in the climate system, and our in-

tercomparison study provides an assessment of how this

is represented by different datasets.

Two spectral decomposition techniques, namely

CMCA and CPCA, are used to extract the major modes

of variability from all datasets combined. These methods

are particularly useful in space–time comparison as they

allow the simultaneous examination of both spatial and

TABLE 5. Full dataset for CTP, showing the correlation co-

efficients between the spatial patterns of modes 1 and 2 of different

datasets with those of MODIS.

Dataset ISCCP PATMOSX AIRS

Mode 1 0.69 0.84 0.80

Mode 2 0.55 0.76 0.75

FIG. 15.Multiyear averaged seasonal cycle for the Sahel (marked

by the black rectangle in Fig. 14) for the five datasets minus

EECRA.The seasonal cycles for PATMOS-x andAIRS are clearly

out of phase with ISCCP and MODIS.

FIG. 16. Variances explained by the first 20 CPCA modes for deseasonalized CTP dataset.
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temporal variability and, furthermore, associate the

comparison with physical processes such as seasonal

cycles and signatures of climate modes.

The results reveal good agreement for both the CAand

CTP, and on both seasonal and interannual time scales.

The spatial modes of different datasets are highly corre-

lated, with the majority of the correlations above 0.7 and

often reaching 0.9, which is a strong support that all

datasets capture the dominant cloud variations.

For the CA, the differences mainly lie in NH high

latitudes and marine stratus cloud regions of northern

Mexican coast and West African coast. For NH high lati-

tudes, PATMOS-x and MODIS have a strong summer–

winter seasonal cycle, while the seasonality of ISCCP,

AIRS, and EECRA is relatively weaker and out of phase.

For the marine stratus regions, off the northern Mexican

coast the AIRS data are out of phase with all of the other

datasets. AIRS also appears to have a phase shift in the

seasonal cycle due to the decrease in cloud fraction from

August to December off the West African coast. With

respect to the CTP, major seasonal cycle differences are

found over the Sahel region, where the PATMOS-x and

FIG. 17. As in Fig. 3, but for the first threemodes of deseasonalized CTP dataset; and without EECRA.Modes 1, 2, and 3 are found to be

correlated with the PDO, ENSO, and the IODM, respectively. The PDO index andMEI andDMI time series are plotted on top of the PC

time series, and the correlations between PCs 1–3 with the PDO index, MEI, and DMI are 0.64, 0.68, and 0.40, respectively. The spatial

patterns of these three modes also resemble the SST anomalies associated with these three types of climate oscillations. The spatial

patterns of PATMOS-x, AIRS, and MODIS data are quite consistent. ISCCP captures the major spatial patterns, but with some dif-

ferences over the Indian Ocean and west Pacific.
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AIRS seasonal cycle is out of phase with ISCCP and

MODIS. The interannual variability for ISCCP data

might have artifacts for Indian Ocean and west Pacific.

For the study period, ISCCP data over this region are

directly from the Multifunctional Transport Satellite

(MTSAT) of Japan Meteorological Agency, which has

some anomalies in its lowest visible radiances and re-

sults, to some extent, in the detection of extra thin cirrus.

On interannual scales, global CA variability is primarily

governed by ENSO variability in the tropical Pacific,

while the dominant variability in the CTP is associated

with the PDO, ENSO, and the IODM.

The agreements reached in the CA and CTP parame-

ters are encouraging, and increase our confidence in using

these datasets for climate and modeling studies. In addi-

tion, the problems and inconsistencies identified through

the comparison provide information for further im-

provements of the datasets or algorithms, such as the

planned new ISCCP version, in order to produce a con-

sistent cloud climatology. Future workwill concentrate on

other derived cloud variables, especially cloud optical

depth and particle size. We will also further examine the

variability of high, middle, and low cloud amounts, as

these are equally important parameters in determining

Earth’s energy budget. Moreover, while the comparison

in this study focuses on observational datasets, the spec-

tral analysis techniques can also be useful tools in the in-

tercomparison of model results, as well as between model

and observations. These will also be interesting topics for

future study.
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